
Selecting Appropriate Representations for

Learning from Examples

Nicholas S. Flann and Thomas G. Dietterich

Department of Computer Science

Oregon State University

Corvallis, Oregon 97331

Abstract

The task of inductive learning from examples places constraints on the

representation of training instances and concepts. These constraints are

different from, and often incompatible with, the constraints placed on the

representation by the performance task. This incompatibility explains

why previous researchers have found it so difficult to construct good rep-

resentations for inductive learning—they were trying to achieve a com-

promise between these two sets of constraints. To address this problem,

we have developed a learning system that employs two different represen-

tations: one for learning and one for performance. The learning system

accepts training instances in the “performance representation,” converts

them into a “learning representation” where they are inductively gener-

alized, and then maps the learned concept back into the “performance

representation.” The advantages of this approach are (a) many fewer

training instances are required to learn the concept, (b) the biases of the

learning program are very simple, and (c) the learning system requires

virtually no “vocabulary engineering” to learn concepts in a new domain.

1

1 Introduction

In the idea paper entitled “Learning Meaning,” Minsky (1985) stresses the importance of

maintaining different representations of knowledge, each suited to different tasks. For exam-

ple, a system designed to recognize examples of cups on a table would do well to represent its

knowledge as descriptions of observable features and structures. In contrast, a planning sys-

tem employing cups to achieve goals would require a representation describing the purpose

and function of cups.

When we turn from the issue of performance to the issue of learning, it is not clear what

representation to choose. The most direct approach is to choose the same representation

for learning as for performance, thus gaining the advantage that any knowledge learned

will be immediately available to support performance. Early machine learning work, such

as Winston’s ARCH (Winston 1975) and Michalski’s AQ11 system (Michalsk & Chilausky,

1980), employed this approach, and it worked quite well. The design of a structural language

capable of capturing the concepts of interest was straightforward, and concepts were learned

quickly with (relatively) few training instances.

However, when Quinlan (1982) attempted to pursue this approach in his work on learning

chess end-game concepts, he encountered difficulties. His representation for high-level chess

features was effective for the task of recognizing end-game positions, but it introduced many

problems for the learning task. First, the concept language was very difficult to design.

Quinlan spent two man-months iteratively designing and testing the language until it was

satisfactory. The second problem was that it took a large number of training instances (a

minimum of 334) to learn the concept of lost-in-3-ply completely. These problems illustrate

that the approach of employing the same representation for learning and for performance

was inappropriate for this domain.

In this paper, we show that inductive learning places constraints on the representation

for training instances and concepts and that these constraints often conflict with the require-

ments of the performance task. Hence, the difficulty that Quinlan encountered can be traced

to the fact that the concept lost-in-3-ply is an inherently functional concept that is most

easily learned in a functional representation. However, the performance task (recognition)

requires a structural concept representation. The vocabulary that Quinlan painstakingly

constructed was a compromise between these functional and structural representations.

The remainder of this paper is organized as follows. First, we discuss the constraints

2

that the task of inductive learning places on the representation for training instances and

concepts. Second, we describe a strategy for identifying the most appropriate representation

given these constraints. Third, we consider the problems that arise when the representation

for learning is different from the representation in which the training instances are supplied

and from the representation that is needed by the performance task. Finally, we describe an

implemented system, Wyl, that learns structural descriptions of checkers and chess concepts

by first mapping the training instances into a functional representation, generalizing them

there, and converting the learned concept back into a structural representation for efficient

recognition.

2 Representational Constraints of Inductive Learning

The goal of an inductive learning program is to produce a correct definition of a concept

after observing a relatively small number of positive (and negative) training instances. Gold

(1967) cast this problem in terms of search. The learning program is searching some space

of concept definitions under guidance from the training instances. He showed that (for most

interesting cases) this search cannot produce a unique answer, even with denumerably many

training instances, unless some other criterion, or bias, is applied. Horning (1969), and many

others since, have formulated this task as an optimization problem. The learning program

is given a preference function that states which concept definitions are a priori more likely

to be correct. The task of the learning program is to maximize this likelihood subject to

consistency with the training instances.

This highly abstract view of learning tells us that inductive learning will be easiest when

(a) the search space of possible concept definitions is small, (b) it is easy to check whether a

concept definition is consistent with a training instance, and (c) the preference function or

bias is easy to implement. In practice, researchers in machine learning have achieved these

three properties by (a) restricting the concept description language to contain few (or no)

disjunctions, (b) employing a representation for concepts that permits consistency checking

by direct matching to the training instances, and (c) implementing the bias in terms of

constraints on the syntactic form of the concept description.

Let us explore each of these decisions in detail, since they place strong constraints on the

choice of good representations for inductive learning.

Consider first the restriction that the concept description language must contain little or

3

no disjunction. This constraint helps keep the space of possible concept definitions small. It

can be summarized as saying “Choose a representation in which the desired concept can be

captured succinctly.”

The second decision—to use matching to determine whether a concept definition is consis-

tent with a training instance—places constraints on the representation of training instances.

Training instances must have the same syntactic form as the concept definition. Furthermore,

since the concept definition contains little or no disjunction, the positive training instances

must all be very similar syntactically. To see why this is so, consider the situation that would

arise if the concept definition were highly disjunctive. Each disjunct could correspond to a

separate “cluster” of positive training instances. With disjunction severely limited, however,

the positive training instances must form only a small number of clusters.

In addition to grouping the positive instances “near” one another, the representation

must also allow them to be easily distinguished from the negative instances. This is again a

consequence of the desire to keep the concept definition simple. The concept definition can

be viewed as providing the minimum information necessary to determine whether a training

instance is a positive or a negative instance. Hence, if the concept definition is to be short

and succinct, the syntactic differences between positive and negative instances must be clear

and simple.

The third decision—to implement bias in terms of constraints on the syntactic form

of the concept description—makes the choice of concept representation even more critical.

Recall that the function of bias is to select the correct, or at least the most plausible,

concept description from among all of the concept descriptions consistent with the training

instances. Typically, the bias is implemented as some fixed policy in the program, such as

“prefer conjunctive descriptions” or “prefer descriptions with fewest disjuncts.” The bias will

only have its intended effect if conjunctive descriptions or descriptions with fewest disjuncts

are in fact more plausible. In other words, for syntactic biases to be effective, the concept

description language must be chosen to make them true. The net effect of this is to reinforce

the first representational constraint: the concept representation language should capture the

desired concept as succinctly as possible.

4

3 Choosing the Most Suitable Representation

Now that we have reviewed the constraints that inductive learning places on the representa-

tion, we must consider how to satisfy those constraints in a given learning task. It should be

clear that we want to select the representation that captures the concept most “naturally.”

The “natural” representation is the one that formalizes the underlying reason for treating

a collection of entities as a concept in the first place. A concept (in the machine learning

sense anyway) is a collection of entities that share something in common. Some entities

are grouped together because of the way they appear (e.g., arches, mountains, lakes), the

way they behave (e.g., mobs, avalanches, rivers), or the functions that they serve (e.g., vehi-

cles, cups, doors). Occasionally, these categories correspond nicely. Arches have a common

appearance and a common function (e.g., as doorways or supports). More often, though,

entities similar in one way (e.g., function) are quite different in another (e.g., structure).

The performance task for which a concept definition is to be learned may require a

structural representation (e.g., for efficient recognition), a functional representation (e.g.,

for planning), or a behavioral representation (e.g., for simulation or prediction). When we

review the successes and failures of machine learning, we see that difficulties arise when the

representation required for the performance task is not the natural representation for the

concept.

Winston’s ARCH program was successful because the natural representation—structural—

was also the performance representation. The structural representation captured the im-

portant similarities among the positive training instances as a simple conjunction. It also

separated the positive instances from the negative ones by simple features such as touching

and standing.

Quinlan’s difficulties with lost-in-3-ply can be traced to the fact that this concept is

naturally defined functionally, yet the performance task required a structural representation.

All board positions that are lost-in-3-ply are the same, not because they have the same

appearance, but because they all result in a loss in exactly 3 moves. This concept can be

captured naturally in a representation that includes operators (such as move) and goals

(such as loss). In Quinlan’s concept language, which includes both structural and functional

terms, this concept required a disjunction of 334 disjuncts.

5

Environment
Representation

Learning
Representation

Performance
Representation

Environment
Representation

-

-?

generalization

Figure 1: The Multiple Representation Strategy

4 Coordinating Different Representations

For situations in which the representation most appropriate for learning is different from

the one required for the performance task, there are two basic approaches that can be

pursued. First, we can try, as Quinlan did, to find an intermediate representation that

provides some support for both learning and performance. However, the alternative that we

have investigated is to employ two separate representations—one for learning and one for

performance. This raises the problem of converting from one representation to another.

Figure 1 shows the general structure of a learning system that employs this “multiple

representation strategy.” Training instances are presented to the system in a representation

called the “Environment Representation” (ER). To support induction, the instances are

translated into training instances written in the “Learning Representation” (LR). Within this

representation, the instances are generalized inductively to produce a concept description.

For this concept to be employed in some performance task, it must be translated into the

“Performance Representation (PR).”

Many existing learning systems can be viewed as pursuing variants of this “multiple rep-

resentation strategy.” For example, consider the operation of Meta-DENDRAL (Buchanan

& Mitchell, 1978). Training instances are presented in a structural ER consisting of molecu-

lar structures and associated mass spectra. The program INTSUM converts these structural

training examples into a LR of behavioral descriptions called cleavage processes, which are

sequences of cleavage steps. These individual cleavage steps are then inductively generalized

by programs RULEGEN and RULEMOD to obtain general cleavage rules. In this domain,

the PR is the same as the LR. These cleavage rules are produced as the output of Meta-

DENDRAL for use in predicting how other molecules will behave in the mass spectrometer.

6

One can imagine an implementation of Meta-DENDRAL that attempted to inductively

generalize the training instances in the given structural ER of molecules and mass spectra.

However, this representation does not capture the important similarities between different

molecules. The similarities are properly captured at the level of individual cleavage steps

that produce single spectral lines, rather than entire molecules and spectra.

In addition to Meta-DENDRAL, most of the explanation-based learning systems (e.g.,

Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986) can also be viewed as

employing a version of this multiple representation strategy. In LEX2 (Mitchell, et al., 1982),

for example, training instances are presented in an ER consisting of structural descriptions

of symbolic integration problems. By applying its integration problem solver, LEX2 converts

each training instance into a functional representation (the LR) consisting of a particular

sequence of integration operators leading to a solution. In this LR, the specific sequence of

integration operators is generalized by permitting the final state to be any solved problem

state. In some sense, LEX2 is assuming that the teacher is trying to teach it the concept

of “all integration problems solvable by this particular sequence of operators.” Once it has

developed this generalized concept description in the LR, LEX2 must convert it into the

PR, which is the same representation as the ER. This translation is accomplished by back-

propagating the description of a solved problem through the operator sequence to compute

the weakest preconditions of this particular operator sequence.

This view of LEX2 explains why the original LEX system was not as successful as LEX2.

In LEX, inductive inference was applied to positive training examples represented in the

ER. The goal of inductive learning was to find general structural descriptions of integration

problems for which particular operators, such as OP3, should be applied. This knowledge of

the learning goal was not explicit in the structural representation, but only in the teacher’s

mind. Hence, LEX could not take advantage of it. However, by mapping the training

examples into the functional representation, the learning goal could be made explicit and

used to guide the generalization process. The functional representation concisely captures

the desired similarity between the different training examples.

5 Overview of Wyl

Although previous learning systems can be viewed as applying the multiple representation

strategy, none of these systems fully exploits this approach. In particular, the explanation-

7

Structural
Representation

Functional
Representation

instance

concept

-instance

� concept

envisionment

compilation

generalization

?

Figure 2: Representations in Wyl

based learning systems do not perform any significant inductive inference in the LR aside

from generalizing the final state of the operator sequence. In order to explore the multiple-

representation strategy, we have developed a learning system named Wyl (after James Wyllie,

checker champion of the world from 1847 to 1878) that applies the strategy to learn concepts

in board games such as checkers and chess. We have chosen this domain because there are

many interesting concepts that are naturally functional (e.g., trap, skewer, fork, lost-in-2-

ply) and yet have complex structural definitions. Wyl has been applied to learn definitions

for trap and trap-in-2-ply in checkers and skewer and knight-fork in chess.

The performance task of Wyl is recognition. Given a board position, represented simply

in terms of the kinds and locations of the playing pieces, Wyl must decide whether that

position is, for example, a trap. To perform this task, the trap concept must be represented

in a structural vocabulary that permits efficient matching against the board positions. How-

ever, as we have noted above, concepts such as trap are most easily learned in a functional

representation.

In addition to requiring a structural representation for performance, a structural repre-

sentation is also needed for the training instances. To teach Wyl checkers and chess concepts,

we want to simply present board positions that are examples of those concepts. Hence, in

the terminology of the previous section, the ER and the PR are structural representations,

but the LR is a functional representation.

The organization of Wyl is shown in Figure 2. The three main processes in Wyl are

envisionment, generalization, and compilation. The envisionment process translates each

supplied structural training instance into the functional representation to obtain the corre-

8

Figure 3: Checkers Trap training instance, red to play

sponding functional training instance. The generalization process performs inductive infer-

ence on these functional training instances resulting in a functional definition that captures

the desired concept. Finally the compilation stage converts this functional definition into an

equivalent structural description that can support efficient recognition.

The initial knowledge given to Wyl takes four forms. First, there is the environment

representation for board positions. Second, there is a representation for each of the legal

operators in the game (e.g., normal-move and take-move). Third, Wyl is given the rules of

the game, represented as a recursive schema that describes what moves are legal at what

points in the game. Finally, Wyl is given definitions of the important goals of the game,

such as loss, win, and draw. For chess, Wyl is also told that lose-queen is an important goal.

These given goals are the key to Wyl’s learning ability. Wyl learns new functional

concepts as specializations of these known concepts. For example, the checkers concept trap

is a specialization of loss. To see this, consider the particular trap position shown in Figure 3.

In this position, the red king in square 2 is trapped by the white man at square 10. No matter

what move the red king makes, the white man can take him. Hence, trap is a particular way

to lose a checkers game. Once Wyl learns a recognition predicate for trap, it is added to the

pool of known concepts, where it may be specialized further to form some future concept

(such as trap-in-2-ply).

9

The goals are provided to Wyl in a predicate calculus notation. The checkers concept of

loss is represented below (win is the dual case):

∀ state1 side1 LOSS(state1 side1) ⇔

recognizedLOSS(state1 side1)

∨ ∀ state2 side2 type from over to

oppositeplayer(side1 side2)

∧ [[takemove(state1 state2 from over to side1 type)

∧WIN(state2 side2)]

∨ [normalmove(state1 state2 from to side1 type)

∧WIN(state2 side2)]].

This formula is interpreted as follows. A board is an instance of loss if, for all legal moves

available to side1, the outcome is a win for the other player (side2). In checkers, there are

two kinds of moves: takemoves, in which one piece captures another by jumping over it, and

normalmoves, in which a piece simply moves one square.

This completes our overview of the Wyl system and the information that it is initially

given. The following three sections describe each of the main phases of the program: envi-

sionment, generalization, and compilation. We illustrate the operation of Wyl as it learns

the checkers concept of trap.

5.1 Envisionment

Wyl starts with a given structural training instance (i.e., board position), which it is told is

an instance of trap. In Figure 3, we illustrate the first training instance for trap, with red

to play. The structural representation of the instance State1 is

occupied(State1 s2 rk1)∧

occupied(State1 s10 wm1) ⊃ TRAP (State1 red).

Where rk1 and wm1 are playing pieces, described as

type(wm1 man) ∧ side(wm1 white) ∧ type(rk1 king) ∧ side(rk1 red).

To convert this into a functional instance, Wyl applies a special proof procedure to State1.

This proof procedure has the effect of conducting a minimax search to look for known goals.

When a known goal is discovered, the proof procedure returns a minimax search tree in

which each state is marked with its outcome.

10

Normalmove
from s2
to s7
kind king
side red

LOSS(red)

J
J

J
J
JĴ

WIN(white)

?

Takemove
from s10
over s7
to s3
kind man
side white

WIN(white)

�

?
LOSS(red) LOSS(red)

Normalmove
from s2
to s6
kind king
side red

Takemove
from s10
over s6
to s1
kind man
side white

Figure 4: Functional training instance for trap

In our trap example, the proof procedure discovers that the board position is an instanti-

ation of the concept loss, with each node representing a state in the search and each branch

representing the particular operators in the search. The first operators instantiated are the

normalmoves from square s2. These are followed by takemoves that lead to an instantiation

of the predicate recognizedLOSS and termination of the search.

The next step is to convert this minimax tree into an explanation tree (along the lines

of Mitchell, et al., 1986). An explanation tree is a proof tree that explains the computed

outcome (i.e., loss) of the training instance. The minimax tree contains all of the information

needed to construct this proof, but usually it also contains extra information that is irrelevant

to the proof. Hence, Wyl traverses the minimax tree to extract the minimum (i.e., necessary

and sufficient) conditions for the proof of the outcome. Figure 4 shows the functional training

instance that is produced by this process.

5.2 Generalization

This functional instance describes a particular way to lose a checkers game. It is a conjunction

of two fully instantiated (i.e., ground) sequences of operators, each resulting in a loss. If Wyl

were to follow the standard paradigm of explanation-based learning, it would now attempt

to find the weakest precondition of this particular operator graph that would result in a

loss. However, this is not the concept of trap that the teacher is trying to get Wyl to learn,

because it only describes traps in which the trapped piece has two alternative moves. There

are other traps, against the sides of the board, in which the trapped piece has only one

11

LOSS(white)

WIN(red)

Normalmove
from s28
to s24
kind man
side white

Takemove
from s19
over s24
to s28
kind king
side red

?

?

LOSS(white)

Figure 5: Second functional training instance of trap

possible move. Hence, rather than having Wyl generalize based on one training instance, we

provide it with several training instances and allow it to perform inductive inference on the

functional representations of these instances.

To demonstrate this generalization process, let us present Wyl with a second (very well-

chosen) training instance. This structural training instance can be expressed in logic as

occupied(State8 s28 wm1)∧

occupied(State8 s19 rk1) ⊃ TRAP (State8 white).

In this instance, a red king has trapped a white man against the east side of the board

(see Figure 3). Wyl performs the envisionment process and discovers that this situation

again leads to a loss—this time for white. The minimax tree is a simple sequence of moves,

because white has only one possible move. Figure 5 shows the resulting functional training

instance.

Now that two training examples have been presented, Wyl is able to perform some

inductive generalization. Two simple and strong biases are employed to guide this induction.

The first is the familiar bias toward maximally-specific generalizations. The two func-

tional instances are generalized as little as possible. The second bias can be stated as “There

are no coincidences.” More concretely, if the same constant appears at two different points

within a single training instance, it is asserted that those two different points are necessarily

equal.

The result of applying these two inductive biases to the training instances is shown in

Figure 6. In order to make the two separate branches of the first training instance match the

12

LOSS(side1)

WIN(side2)

Takemove
from from2
over to1
to to2
kind type2
side side2

Normalmove
from from1
to to1
kind type1
side side1

?

?

LOSS(side1)

Figure 6: Generalized functional definition of trap

single branch in the second instance, Wyl must generalize to a single universally-quantified

line of play that allows any number of branches. Similarly, in order to make the kinds, types,

and locations of the pieces match, Wyl must generalize all of these specific constants to

variables. However, these variables are not completely independent of one another. First,

the two sides are known to be opposing. Second, the no-coincidences bias is applied to ensure

that the square that the first piece moves to (to1) is the same as the square that the second

piece jumps over in the takemove.

Because we chose these two training examples carefully, this generalized functional de-

scription is the correct definition of trap. This functional definition of trap can be expressed

in logic as

∀ state1 side1 from1 from2 TRAP (state1 side1) ⇔

∀ state2 type1 to1 oppositeplayer(side1 side2)

∧normalmove(state1 state2 from1 to1 side1 type1)

∧ ∃ state3 type2 to2

takemove(state2 state3 from2 to1 to2 side2 type2)

∧recognizedLOSS(state3 side1).

5.3 Compilation

The third stage of the learning process is to translate the functional knowledge into a form

suitable for recognition—that is, to re-describe the acquired functional concept in the PR.

13

This is a difficult task, because, unlike LEX2, Wyl is not given a good vocabulary for the

performance language. The only structural representation that Wyl receives from the teacher

is the representation used to describe individual board positions. This language could be

used to represent the structural concept, but for trap this would require a large disjunction

with 146 disjuncts. For other functional concepts, this approach is clearly infeasible.

Instead of employing the same low level structural language in which the training in-

stances were presented, Wyl must construct its own structural concept language for express-

ing the functional concept.

Currently, there are no methods capable of designing such a structural language automat-

ically. The only method that provides even a partial solution to this problem is the method

of constraint back-propagation or goal regression (Mitchell, et al., 1986). Utgoff (1986) shows

that this method can create new structural terms to extend a structural language. We are

experimenting with extensions to his method to construct terms in chess and checkers, but

to date we do not have a fully satisfactory method.

Instead, we have explored an alternative (and extremely inefficient) approach in Wyl

based on generation and clustering. First we apply the functional definition to generate all

possible structural examples of the concept (i.e., all possible board positions that are traps

according to the functional definition). This can be viewed as a highly disjunctive description

of the concept in the supplied environment language. Next the large number of disjunctions

in the description is reduced by a compaction process that creates simple new terms.

The generator works by employing the functional concept as a constructive proof, gener-

ating all possible board positions consistent with the concept. (We employ an extension of

the Residue inference procedure of the MRS system; see Russell, 1985.) Each trap position

generated is a conjunction of the two single observable facts like the structural trap exam-

ples given above and illustrated in Figure 3. In the trap case, a disjunction of 146 possible

positions is generated. The compaction stage then applies two algorithms to compress this

set of 146 positions into a disjunction of 11 (more general) descriptions.

The first algorithm discovers simple relational terms that describe relationships between

squares. For example, in the first training example of trap (State1), the white king is

directly two squares south of the red king. As part of Wyl’s initial environment language,

primitive facts are given that describe the relationship between any square on the board and

its immediate neighbors. The neighbors of s2 are sw(s2, s6) and se(s2, s7). The algorithm

identifies new relational terms by a simple breadth-first search from one of the squares in an

14

instance to discover paths to the others. From State1, a disjunction of two terms is found:

∀ square1 square2 square3 South2squares(square1 square2) ⇔

[se(square1 square3) ∧ sw(square3 square2)]

∨[sw(square1 square3) ∧ se(square3 square2)]

The second term-creation algorithm is similar to GLAUBER (Langley et al., 1986) and

identifies common internal disjunctions over the primitive structural features. The structural

instances created by the generator are translated into a feature-vector representation based

on the primitive attributes. For example, State1 is translated to the following vector:

TRAPvector(red king s2 white man s10).

The first three items describe the red king, the following three, the white man. Next,

one of the squares is replaced by its relationship with the other. The new relational term

South2squares is used, and it yields the new instance:

TRAPvector(red king s2 white man South2squares).

Common disjunctions are found by locating sets of instance vectors that share all but one

feature in common. For example, consider two trap positions, the initial training instance

and a red king on s3, white man on s11 given below:

TRAPvector(red king s2 white man South2squares)

TRAPvector(red king s3 white man South2squares)

The algorithm identifies the set of squares {s2, s3}, which is named NorthCenterSide. All

of the features can be used to form the new terms. Using the trap instances, this algorithm

creates terms defining regions such as Center {s6, s7, s8, s14, s15, s16, s22, s23, s24},

NorthSingleSide {s4, NorthCenterSide}. Directional relationships between squares produce

terms such as North, {ne, nw} and AnyDirection, {North, South}. In all, Wyl discovers 13

descriptive terms of this kind, along with 6 relational terms like South2squares.

While this method is very successful in constructing new terms, it is clearly unsatisfactory,

since it does not scale up to domains having large or infinite numbers of structural instances.

Even for trap this algorithm requires several hours of CPU time on a VAX 11/750. We are

optimistic that a more direct algorithm, based on goal regression, can be developed.

15

6 Relationship to Previous Research

It is informative to compare Wyl to previous work in explanation-based learning. If we

were to apply the explanation-based learning paradigm of Mitchell, et al. (1986), we would

need to provide Wyl with four things: (a) the goal concept, (b) the domain theory, (c) the

operationality criterion, and (d) the training instance. In the checkers domain, the goal

concept would be a functional definition of trap. The domain theory would be the rules of

checkers and the goals of win, loss, and draw. The operationality criterion would state that

the final definition should be given in a structural vocabulary. The training instance would,

of course, be a structural example of a trap. When we consider Wyl, we see that all of these

things have been provided except for the goal concept. Wyl can be said to acquire the goal

concept by inductive inference from the training examples.

An example from LEX2 will clarify this point. In LEX2, one goal concept is Useful-OP3,

that is, the set of all integration problems that can be solved by applying a sequence of oper-

ators beginning with operator OP3. The domain theory consists of the definition of solvable

and solved problems. Imagine a new version of LEX2 constructed along the lines of Wyl

(call it WYLLEX). WYLLEX would be given the domain theory, the operationality criterion

and several training instances, but no goal concept. For each (structural) training instance,

it would apply its domain theory to convert it into a functional instance. Suppose we are

trying to teach WYLLEX the concept of Useful-OP3. We would present positive examples

of problems for which applying OP3 leads to a solution. When WYLLEX converted these

to functional instances, they would each consist of a sequence of operators beginning with

OP3 and ending in a solved problem. Hence, WYLLEX could perform inductive inference

on these functional instances and derive the concept of Useful-OP3.

Notice that in order to convert the structural instances into functional instances, WYLLEX

must already have a concept more general than the goal concept, namely, the concept of solv-

able problem. Similarly, Wyl starts out with knowledge about the very general goals of win,

loss, and draw and learns more specific goals such as trap and trap-in-2-ply. (The same is

true in Meta-DENDRAL, where all concepts learned are specializations of the initial “half-

order theory.”) This is not a serious limitation, because it is reasonable to assume that

all intelligent agents have available a hierarchy of goals rooted in goals like survival and

minimize-resource-consumption.

An area of work closely related to explanation-based learning is the work on purpose-

16

based analogy (Winston, et al., 1983; Kedar-Cabelli, 1985). The constraints imposed on

representations by inductive learning are exactly those imposed by analogical reasoning. For

two items to be analogous, they must have some commonality. That commonality is often

not expressed in surface (observable) features, but in function. A hydrogen atom is like our

solar system not because of size or color, but because of the way the respective components

interact. So, the best representation for analogical reasoning about different items is one

in which their underlying similarity is captured syntactically. The work in Wyl suggests

that new analogies may be exploited to identify new functional concepts as specializations

of existing goals.

7 Conclusion

In this paper, we have argued that inductive learning is most effective when the concept lan-

guage captures the “natural” similarities and differences among the training instances. We

have also shown that in some domains the representation required for efficient performance

is not the “natural” one. To resolve this difficulty, we proposed the “multiple-representation

strategy” whereby the learning system translates the training examples into a “natural”

representation for inductive learning and then translates the learned concepts into the ap-

propriate performance representation. We have tested this strategy by implementing the

Wyl system, which learns functional concepts from structural examples in chess and check-

ers. Wyl demonstrates three key advantages of this strategy: (a) fewer examples are required

to learn the concept, (b) the bias built into the program is very simple (maximally-specific

generalization), and (c) the representation language requires little or no domain-specific or

concept-specific engineering.

Our analysis of Wyl suggests that previous learning systems can be usefully viewed as

pursuing simpler variants of this multiple-representation strategy. This suggests that part

of the power of these learning systems derives from the choice of representation (as well as

from the use of a domain theory).

8 Acknowledgments

The authors wish to thank Bruce Porter for reading a draft of this paper. The AAAI

referees also made many helpful comments. This research was partially supported by a

17

Tektronix Graduate Fellowship (to Flann) and by the National Science Foundation under

grant numbers IST-8519926 and DMC-8514949.

9 References

Buchanan, B. G. and Mitchell, T. M., “Model-Directed Learning of Production Rules,”

in Pattern-Directed Inference Systems, Waterman, D. A. and Hayes-Roth, F. (Eds.),

Academic Press, New York, 1978.

DeJong, G., and Mooney, R., “Explanation-Based Learning: An alternative view,” Machine

Learning 1, 1986.

Gold, E. “Language identification in the limit.” in Information and Control, Vol 16, 447–474,

1967.

Horning, J. J. “A Study of grammatical inference.” Rep. No. CS-139, Computer Science

Department, Stanford University. 1969.

Kedar-Cabelli, S.T., “Purpose-Directed Analogy,” in Proceedings of the Cognitive Science

Society, Irvine, Calif., 1985.

Langley, P. W., Zytkow, J., Simon, H. A., and Bradshaw, G. L., “The search for regularity:

Four Aspects of Scientific Discovery,” in Machine Learning: An Artificial Intelligence

Approach, Vol II. Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga

Press, Palo Alto, 1986.

Michalski, R. S. and Chilausky, R. L., “Learning by Being Told and Learning from Ex-

amples: An Experimental Comparison of Two Methods of Knowledge Acquisition,”

Policy Analysis and Information Systems, Vol. 4, No. 2, June 1980.

Minsky, M. “Society of mind,” Technical Report, Massachusetts Institute of Technology,

(1985).

Mitchell, T.M., Utgoff, P. E. and Banerji, R., “Learning by Experimentation: Acquiring and

Refining Problem-Solving Heuristics”, in Machine Learning: An Artificial Intelligence

Approach, Vol I., Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga

Press, Palo Alto, 1982.

18

Mitchell, T., Keller, R., and Kedar-Cabelli, S. “Explanation-Based Generalization: A Uni-

fying View,” in Machine Learning 1, 1, 1986.

Quinlan, J. R., “Learning Efficient Classification Procedures and their Application to Chess

End Games” in Machine Learning: An Artificial Intelligence Approach, Vol I. Michal-

ski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga Press, Palo Alto, 1982.

Russell, S., “The Compleat Guide to MRS,” Rep. No. KSL-85-12, Knowledge Systems

Laboratory, Department of Computer Science, Stanford University, 1985.

Utgoff, P. E., “Shift of Bias for Inductive Concept Learning,” in Machine Learning: An

Artificial Intelligence Approach, Vol II. Michalski, R. S., Carbonell, J. G. and Mitchell,

T. M. (Eds.), Tioga Press, Palo Alto, 1986.

Winston, P., Binford, T., Katz, B. and Lowry, M. “Learning Physical Descriptions from

Functional Definitions, Examples and Precedents,” Proceedings of AAAI–83, Wash-

ington, D.C., 1983.

Winston, P. H., “Learning Structural Descriptions from Examples,” in The Psychology of

Computer Vision, Winston, P. H. (Ed.), McGraw Hill, New York, Ch. 5, 1975.

19

