
Predicting User Tasks: I Know What You’re Doing!

Simone Stumpf, Xinlong Bao, Anton Dragunov, Thomas G. Dietterich, Jon Herlocker, Kevin
Johnsrude, Lida Li, JianQiang Shen

School of Electrical Engineering
Oregon State University

Corvallis, OR
stumpf@eecs.oregonstate.edu

Abstract
Knowledge workers spend the majority of their working
hours processing and manipulating information. These users
face continual costs as they switch between tasks to retrieve
and create information. The TaskTracer project at Oregon
State University is investigating the possibilities of a
desktop software system that will record in detail how
knowledge workers complete tasks, and intelligently
leverage that information to increase efficiency and
productivity. Our approach combines human-computer
interaction and machine learning to assign each observed
action (opening a file, saving a file, sending an email,
cutting and pasting information, etc.) to a task for which it is
likely being performed. In this paper we report on ways we
have applied machine learning in this environment and
lessons learned so far.

Introduction
Knowledge workers spend the majority of their working
hours processing and manipulating information. These
users face continual costs as they switch between tasks to
retrieve and create information. The information may be
encoded in many different formats: documents, software
code, web pages, email messages, phone conversations.
The cost to the user of finding information may be
cognitive: workers may have to remember exactly where
they were in a chain of logic, or why they decided to take
their most recent action on a task. The cost may also lie in
the manual interaction needed to access the necessary
resources (e.g., documents and/or software tools).
 Knowledge workers organize their work into discrete
and describable units, such as projects, tasks or to-do
items. The TaskTracer project at Oregon State University
is investigating the possibilities of a desktop software
system that will record in detail how knowledge workers
complete tasks, and intelligently leverage that information
to increase efficiency and productivity. Our goal is to
develop five capabilities: more task-aware user interfaces
in the applications we use daily, more efficient task-
interruption recovery, better personal information
management, workgroup information management and
within-workgroup workflow detection and analysis. Our
system operates in the Microsoft Windows environment,
tracking most interactions with desktop applications as
well as tracking phone calls. Our approach combines

human-computer interaction and machine learning to
assign each observed action (opening a file, saving a file,
sending an email, cutting and pasting information, etc.) to a
task for which it is likely being performed. Once we have
the past actions structured by task, we can provide
substantial value to the knowledge worker in assisting in
their daily task routines.
 There is a substantial set of research challenges that
must be faced in order to successfully develop the
TaskTracer system with these capabilities. These
challenges include user interface design, machine learning,
privacy and workplace culture, data collection, systems
architecture, and data modeling. In this paper we report on
ways we have applied machine learning in this
environment and lessons learned so far.

Task-tracking and task-related systems
There have been previous efforts to build environments
that enable knowledge workers to manage multiple
concurrent activities, which we call tasks, and use
knowledge of those activities to improve productivity.
Workspaces (Bannon et al. 1983) can define tasks that
comprise information resources (usually documents and
tools for their processing) that are necessary to accomplish
the goal associated with the task. Some systems work on
the idea of physically separating tasks by requiring users to
create project-specific folders, or set up a virtual desktop
for each particular task (Card and Henderson 1987,
Robertson et al. 2000). Other systems work at a more
abstract level by organizing task-specific workspaces using
“filters” applied to communication threads (Bellotti et al.
2003), streams or networks of documents (Freeman and
Gelernter 1996, Dourish et al. 1999).
 To be of assistance to a user, an agent (whether it is a
computer system or a human associate) must “know” what
the user is currently doing. In addition to the resources
used in a task, it also seems reasonable to record users’
actions performed on those resources. The rationale behind
this is that to have the correct comprehension of the task
context for some resources we must consider in which way
and for what reason they were accessed. For instance, the
same document (say, a text file) may be opened for two
completely different purposes: 1) for reading and 2) for
authoring. Various systems (Fenstermacher and Ginsburg

2002, Kaptelinin 2003, Canny 2004) address this issue by
aiming at recording as much information as possible about
users’ activities when they interact with computers. These
activity records are obtained via monitoring the computer
file system, input devices, and applications.
 Our software, TaskTracer, employs an extensive data-
collection framework to obtain detailed observations of
user interactions in the common productivity applications
used in knowledge work (Dragunov et al. 2004). Currently,
events are collected from Microsoft Office 2003, Microsoft
Visual Studio .NET, Windows XP operating system and
phone calls. In this framework, TaskTracer collects file
pathnames for file create, change, open, print and save, text
selection, copy-paste, windows focus, web navigation,
phone call, clipboard and email events. Phone call data
collection uses Caller Id to collect names and phone
numbers of callers. In addition, speech-to-text software
collects the user’s — but not the caller’s — phone speech.
All events are captured as individual EventMessages which
contain:
• Type: Event type. For example, TaskTracer captures

window focus, file open, file save, web page navigation,
text selection, and many other events on both the
applications and the operating system levels.

• Window ID: Window handle for windows, zero
otherwise.

• Listener Version: Changes every time we change or add
to the EventMessages the Listener can send and process.
This allows backward compatibility as we change our
data capture.

• Listener ID, the source of the EventMessage: MS Office
pro-grams, file system hooks, user, clipboard, phone,
etc.

• Body Type, Body: Event or document data in XML
format.

• Time: Time the event fired.

 Instead of using unsupervised clustering to discover
tasks (Canny 2004), users of TaskTracer manually specify
what tasks they are doing in the initial stage of data
collection, so that each action of the user (a User Interface
event) will be tagged with a particular task identifier to
train predictors. We believe that we can learn to reliably
predict the users’ current task and task switches, and thus
we can create complete and detailed records of what has
been done on every task (past and present). All
EventMessages are stored in a database in raw form so that
researchers can analyze the history of user events. A
variety of learning models can be tested on identical data
sets. We are currently researching learning models based
on the event data for predicting the current task of the user,
for detecting when the user has changed tasks and for
reducing the cost of accessing resources whilst carrying out
a task.

Plan Recognition and Task Prediction
There is a range of plan recognition tasks that people have
addressed (Ourston and Mooney 1990, Davison and Hirsh
1998, Bauer 1999). For example, some work has been
carried out to recognize that someone is executing an
instance of a particular plan and suggest the next action. A
plan often has flexibility but the user is executing a specific
structured activity (e.g., taking money out of an ATM,
calibrating a glucose meter).
 What we are addressing is supporting an unstructured
activity (e.g. writing the AAAI submission, putting
together a research study). These activities typically have
no or only a loosely fixed structure and are highly
distinctive to the individual knowledge worker. Hence, the
way that we use the term “task” is a user-defined concept
name, instead of a sequence of user actions (as an aside,
we would call this sequence an “event stream”).
 These two approaches vary mostly in their degree of
sequential/hierarchical structure in the activity. We are not
suggesting that these two approaches are mutually
exclusive, indeed, much can be learned from plan
recognition.
 It could be argued that no effective user support is
possible without a deep structure that can be used to
explain the observed user behavior. However, we are not
trying to explain the user behavior itself since the user is
very competent already in deciding what to do (and what to
do next). What we are trying to achieve instead is the
reduction of the costs that knowledge workers face when
they carry out their tasks by keeping task-related
information organized. Costs may be physical/mechanical
such as the number of user interface interactions (mouse,
keyboard, etc) needed to achieve a goal. Costs may
sometimes be in time. There are also cognitive costs, such
as the remembering where a piece of information was filed
or learning any new features. In addition to the “actual”
costs that workers encounter while pursuing their tasks, we
must also be particularly aware of the perceived costs of
using any features.

TaskPredictor and FolderPredictor
Automatic translation of interaction histories into project
contexts is very challenging to implement (Kaptelinin
2003). If users must indicate task switching manually (as
currently implemented in TaskTracer), this will create
additional cognitive and physical costs for users, since they
will have to 1) mentally structure their activities and 2)
perform additional actions not directly related to the
current goals — select tasks from lists, type in task titles
and descriptions, etc. We believe that we can reduce these
costs by combining probabilistic machine learning
approaches with appropriate user interfaces that maximize
online learning whilst reducing the cost on the user.
 There are three main challenges to the machine learning
approach. Firstly, accuracy must be exceptionally high to
be acceptable to the user. Secondly, manual task switches

have fuzzy boundaries. For example, if a user has finished
editing a document on a task and wants to edit another
resource on a different task, making a manual task switch
may introduce noise: should it be changed while they are
still viewing the current document but before launching the
new one or after closing the old one and opening the new
one? Secondly, users may achieve the same task in
different ways, hence doing something on the same task
can generate different event streams. Conversely, different
tasks may utilize the same objects, i.e. events and
resources.
 TaskPredictor is a component in TaskTracer that
predicts the currently active task and sets the current task
to the predicted task on the user’s behalf, thereby reducing
the cost to the user to switch tasks explicitly (see Figure 1,
a & b). Online learning is utilized to update the model if
the user corrects the predicted task.

(a)

(b)
Fig. 1 – TaskPredictor predicts tasks on windows focus
switches

he probabilistic framework we are employing in

Window

e have evaluated this approach by testing on a dataset

T
TaskPredictor can be outlined as follows. Let observation
O = (ot-k ,…, ot-1 , ot) be an ordered set of observations
from time t – k to t, where k is 0 if we ignore the temporal
relationship and only consider the current observation. Our
goal is to get a probabilistic distribution about the current
task given O: P(Taskt = taski | ot-k ,…, ot-1 , ot).
 Feature construction occurs as follows. A
Document Segment (WDS) consists of the time period in
which a window has the focus and this window is looking
at a single document. It is assumed that the user is on a
single task in the same WDS and a prediction is only
necessary when the WDS changes. We make a prediction
when navigation events occur in Internet Explorer, window
focus switches, when a new application is started, or a
resource is opened or saved. The source for the features
comes from window titles, file pathnames, website URLs,
and document content. Each source is segmented into a set
of “words”, where each word corresponds to a binary
variable wi in the feature vector. We utilize a stopword list
to eliminate irrelevant features. We then use a Naïve
Bayesian classifier to learn P(w|taski) and P(taski) and
make predictions by using Bayes rules to calculate P(taski|
w).
 W
from a team member. This data set, collected over a period
of three months, contained 81 different tasks, 11455 WDS
and 1239 features. If we predict on every WDS (θ = 0,
where θ is the normalized probability of a task that is
computed from the Naive Bayes model), using
unprocessed data, we achieve an accuracy of 25%. Once
“meaningless” events – events that happen in all tasks (e.g.
open/save dialogs, blank web pages) or events not related
to any tasks (e.g. a file used by an application all the time)
– are removed, the accuracy is further increased to 60%
(see Fig. 2).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Events Number

Pr
ec

is
io

n

Fig. 2 – TaskPredictor precision results after removing

 we abstain from making a prediction when we are not

“meaningless” data

If
confident (when we are below a threshold θ of the
normalized probability of a task) we further increase the
level of correct predictions to 85% (θ = 0.9) (see Fig. 3).

However, whether or not 50% coverage is good enough to
the user needs to be investigated, but not every WDS is a
task switch so an abstention might be the right answer.
 We have compared Logistic Regression and Dynamic

by applying feature selection by using

Bayesian Networks (DBNs) to the Naïve Bayes (NB)
approach. If we always make a prediction (that is, the
threshold is 0), then Logistic Regression significantly
outperforms its generative analog the Naïve Bayes
classifier. However, with other thresholds their
performance is on a par and, since the training of Logistic
Regression is more expensive, the Naïve Bayes approach is
preferable. DBNs can capture the temporal relationship,
since DBNs use all available observations. Common sense
tells us that it therefore should be more suitable for
TaskTracer. However, in our situation, it does not result in
increased accuracy over Naïve Bayes. One possible reason
for this is that in most sequential problems, people make
predictions based on the whole information (past, current
and future observations), but in TaskTracer we can only
use the information up to a certain point (past and current
observations). Again, according to Occam's Razor, since
DBNs and NB have similar accuracy, and the learning and
inference of DBN are much more expensive than NB, we
prefer NB.
 Finally,
information gain, we appear to have pushed the accuracy to
95%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold

Pr
ec

is
io

n

Fig. 3 – TaskPredictor precision results using threshold

Once we know the current task, we leverage that

tions by changing both the

icrosoft Office resource,

• ers are tied to user-defined task names.

• to the native Windows

s
for prediction abstentions

information to support user activity. We have implemented
a FolderPredictor to reduce the user cost of accessing
resources given a certain task. Knowledge workers often
have different folders for each task. In our approach we
sort the folders based on the frequency in which user has
opened/saved files before and use exponential decay to
prioritize most recently accessed directories. For the
recency weighting in FolderPredictor a parameter named
DiscountFactor is used, which is a real number between 0
and 1. Each time the predictions are updated, the old
predictions are multiplied by this DiscountFactor. We

tuned this parameter by experiment, and found that 0.7
works best on the test data.
 We employ these predic
initial folder and the places bar of the Windows Open and
Save As dialog box, as shown in Fig. 4. At the moment the
usefulness of the prediction is evaluated by the cost to the
user in reaching the desired file i.e. the distance between
predicted folders and the user's destination folder. We find
that, on average, the desired folder is roughly one click
away from the set of folders returned by FolderPredictor.
 On the surface, the TaskTracer approach is similar to
MailCat or SwiftFile (Segal and Kephart 1999, 2000)
which predicts folders in which to store emails. MailCat
employs TF-IDF by training on emails filed previously
under folders by the user. However, our approach is
different in the following aspects:
• A prediction is made for any M

not just emails.
Appropriate fold
We train on resources being opened and saved under
particular tasks (a resource can be associated with more
than one task) instead of documents being explicitly
filed under folders by the users.
Our approach hooks directly in
environment; it is transparent to the user and therefore
carries no overhead cost for the user to learn additional
interactions.

Fig. 4 – FolderPredictor integrated into the Open dialog
box

Discussion, Future Work and Conclusion
TaskPredictor, FolderPredictor and the associated
TaskTracer system have been used by our research team
for more than six months. FolderPredictor in particular
appears to be the most cost-saving component in this
environment. We are in the process of conducting usability
evaluations “in the wild” to gain feedback from real
knowledge workers and hope to publish our findings in due
course.
 While we are addressing the machine learning
component we realize that there are still some issues,
particularly on making machine learning more
comprehensible by humans. Firstly, we need to address the
user’s perceived loss of control when predictions are made.
This suggests that we need to investigate the
appropriateness of different prediction strategies related to
user cost. For example, one such strategy would be to only
offer these predictions as suggestions to the user. However,
additional cost is then placed on the user in choosing the
appropriate prediction. Another approach that we
considered is to make predictions only when the accuracy
is high enough. The approach that we currently take makes
predictions when the predictions are of high confidence
and abstains from predictions when the confidence is low.
It appears that good results can be achieved with this
approach but further testing will confirm the acceptability
by real users.
 Secondly, we are considering how we can make the
reasons for why a prediction was made more
comprehensible. Currently, we are projecting a simple
system model to the user that explains why a certain
prediction is made. It is based on what resources were
accessed in episodes and when manual task switches
happened. The user can relate to the fact that they “forgot”
to switch the task and therefore associated certain activities
with the wrong task. We can exploit a mental model of
how task switching occurs by providing a timeline or
simple list of events associated with tasks to provide an
explanation to the user of why predictions were made and
what they are based on. Instead of using a rule-based
explanation of predictions we present the grounds of a
prediction informally.
 Lastly, we are looking at how feedback from the user
can be utilized by the learning components. We have to
realize that users are “lazy” positive example givers; we
have addressed this by making users give us implicit
examples as they complete their tasks. We are already
using online learning to enable corrections to affect the
how predictions are made. More interestingly, users are
often not 100% sure themselves or may provide different
answers in different contexts. Users are often able to tell
the system what it is not, but not what it is. For example,
consider a suggested list of tasks where the user indicates
that it is none of these but does not specify the correct one.
How this should be used by learning components is still an
unresolved problem. Furthermore, we are looking at
getting the user to provide examples: it seems that the more
useful things TaskTracer does, the more motivation the

user will have for telling us their tasks. For example, if
FolderPredictor is used all the time, it gives implicit
feedback by displaying the wrong prediction if the user
forgets to change the current task. So maybe the way to
motivate the user is just to keep providing useful features
and rewarding them for their costs. Of course, there is the
danger that the user may have no idea at first that such
rewards are in store. It may look instead like a bunch of
costs for no particular reason. If that happens, the user
could ignore the system's "faulty feedback" (or turn it off).
 To reduce user costs we are looking at using machine
learning approaches. In this paper we have discussed
TaskPredictor and FolderPredictor, that can reduce user
cost. What is important is that both components use user
input to update their model. Users can easily correct the
task or folder predictions and TaskPredictor and
FolderPredictor use this information for on-line learning.
We have achieved some initial encouraging results and are
currently working on refining our approaches. This will
include extensive user testing and development of our
machine learning algorithms.

Acknowledgements
This project was supported in part by the National Science
Foundation under grant IIS-0133994 and by the Defense
Advance Research Projects Agency under grant HR0011-
04-1-0005.

References
Bannon, L., Cypher, A., Greenspan, S. and Monty, M.
1983. Evaluation and Analysis of Users' Activity
Organization. Proceedings of the ACM CHI 83 Human
Factors in Computing Systems Conference, Boston,
Massachusetts, ACM Press.

Bauer, M. 1999. Generation of Alternative Decompositions
for Plan Libraries. IJCAI'99 Workshop on Learning about
Users.

Bellotti, V., Ducheneaut, N., Howard, M. and Smith, I.
2003. Taking Email to Task: The Design and Evaluation of
a Task Management Centered Email Tool. Proceedings of
the SIGCHI conference on Human factors in computing
systems, Ft. Lauderdale, Florida, ACM Press.

Canny, J. 2004. Gap: A Factor Model for Discrete Data.
Proceedings of SIGIR, ACM Press.

Card, S. and Henderson, A. 1987. A Multiple, Virtual-
Workspace Interface to Support User Task Switching.
Proceedings of the SIGCHI/GI conference on Human
factors in computing systems and graphics interface,
Toronto, Ontario, Canada, ACM Press.

Davison, B. D. and Hirsh, H. 1998. Predicting Sequences
of User Actions. AAAI-98/ICML'98 Workshop on
Predicting the Future: AI Approaches to Time Series
Analysis, Madison, WI.

Dourish, P., Edwards, K., LaMarca, A. and Salisbury, M.
1999. Presto: An Experimental Architecture for Fluid
Interactive Document Spaces. ACM Transactions on
Computer-Human Interaction (TOCHI) 6(2): 133-161.

Dragunov, A., Dietterich, T. G., Johnsrude, K.,
McLaughin, M., Li, L. and Herlocker, J. L. 2004.
Tasktracer: A Desktop Environment to Support Multi-
Tasking Knowledge Workers. International Conference on
Intelligent User Interfaces, San Diego.

Fenstermacher, K. D. and Ginsburg, M. 2002. A
Lightweight Framework for Cross-Application User
Monitoring. IEEE Computer 35(3): 51-59.

Freeman, E. and Gelernter, D. 1996. Lifestreams: A
Storage Model for Personal Data. ACM SIGMOD Record
25(1): 80-86.

Kaptelinin, V. 2003. Umea: Translating Interaction
Histories into Project Contexts. Proceedings of the
SIGCHI conference on Human factors in computing
systems, Ft. Lauderdale, Florida, ACM Press.

Ourston, D. and Mooney, R. J. 1990. Changing the Rules:
A Comprehensive Approach to Theory Refinement. 8th
National Conference on Artificial Intelligence, Boston,
MA.

Robertson, G., van Dantzich, M., Robbins, D., Czerwinski,
M., Hinckley, K., Risden, K., Thiel, D. and Gorokhovsky,
V. 2000. The Task Gallery: A 3d Window Manager.
Proceedings of the SIGCHI conference on Human factors
in computing systems, The Hague, The Netherlands, ACM
Press.

Segal, R. and Kephart, J. 1999. Mailcat: An Intelligent
Assistant for Organizing E-Mail. Proceedings of the Third
International Conference on Autonomous Agents.

Segal, R. and Kephart, J. 2000. Incremental Learning in
Swiftfile. Proceedings of the Seventh International
Conference on Machine Learning.

