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Abstract This paper describes a computer vision ap-
proach to automated rapid-throughput taxonomic iden-
tification of stonefly larvae. The long-term goal of this
research is to develop a cost-effective method for environ-
mental monitoring based on automated identification of
indicator species. Recognition of stonefly larvae is chal-
lenging because they are highly articulated, they exhibit
a high degree of intraspecies variation in size and color,
and some species are difficult to distinguish visually, de-
spite prominent dorsal patterning. The stoneflies are im-
aged via an apparatus that manipulates the specimens
into the field of view of a microscope so that images are
obtained under highly repeatable conditions. The images
are then classified through a process that involves (a)
identification of regions of interest, (b) representation of
those regions as SIFT vectors [1], (c) classification of the
SIFT vectors into learned “features” to form a histogram
of detected features, and (d) classification of the feature
histogram via state-of-the-art ensemble classification al-
gorithms. The steps (a) to (c) compose the concatenated
feature histogram (CFH) method. We apply three region
detectors for part (a) above, including a newly developed
principal curvature-based region (PCBR) detector. This
detector finds stable regions of high curvature via a wa-
tershed segmentation algorithm. We compute a separate
dictionary of learned features for each region detector,
and then concatenate the histograms prior to the final
classification step.
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We evaluate this classification methodology on a task
of discriminating among four stonefly taxa, two of which,
Calineuria and Doroneuria, are difficult even for ex-
perts to discriminate. The results show that the com-
bination of all three detectors gives four-class accuracy
of 82% and three-class accuracy (pooling Calineuria and
Doroneuria) of 95%. Each region detector makes a valu-
able contribution. In particular, our new PCBR detector
is able to discriminate Calineuria and Doroneuria much
better than the other detectors.

Key words classification, object recognition, interest
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1 Introduction

There are many environmental science applications that
could benefit from inexpensive computer vision meth-
ods for automated population counting of insects and
other small arthropods. At present, only a handful of
projects can justify the expense of having expert ento-
mologists manually classify field-collected specimens to
obtain measurements of arthropod populations. The goal
of our research is to develop general-purpose computer
vision methods, and associated mechanical hardware, for
rapid-throughput image capture, classification, and sort-
ing of small arthropod specimens. If such methods can be
made sufficiently accurate and inexpensive, they could
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have a positive impact on environmental monitoring and
ecological science [2–4].

The focus of our initial effort is the automated recog-
nition of stonefly (Plecoptera) larvae for the biomoni-
toring of freshwater stream health. Stream quality mea-
surement could be significantly advanced if an economi-
cally practical method were available for monitoring in-
sect populations in stream substrates. Population counts
of stonefly larvae and other aquatic insects inhabiting
stream substrates are known to be a sensitive and robust
indicator of stream health and water quality [5]. Because
these animals live in the stream, they integrate water
quality over time. Hence, they provide a more reliable
measure of stream health than single-time-point chem-
ical measurements. Aquatic insects are especially use-
ful as biomonitors because (a) they are found in nearly
all running-water habitats, (b) their large species diver-
sity offers a wide range of responses to water quality
change, (c) the taxonomy of most groups is well known
and identification keys are available, (d) responses of
many species to different types of pollution have been
established, and (e) data analysis methods for aquatic
insect communities are available [6]. Because of these ad-
vantages, biomonitoring using aquatic insects has been
employed by federal, state, local, tribal, and private re-
source managers to track changes in river and stream
health and to establish baseline criteria for water qual-
ity standards. Collection of aquatic insect samples for
biomonitoring is inexpensive and requires relatively little
technical training. However, the sorting and identifica-
tion of insect specimens can be extremely time consum-
ing and requires substantial technical expertise. Thus,
aquatic insect identification is a major technical bottle-
neck for large-scale implementation of biomonitoring.

Larval stoneflies are especially important for biomon-
itoring because they are sensitive to reductions in wa-
ter quality caused by thermal pollution, eutrophication,
sedimentation, and chemical pollution. On a scale of or-
ganic pollution tolerance from 0 to 10, with 10 being
the most tolerant, most stonefly taxa have a value of 0,
1, or 2 [5]. Because of their low tolerance to pollution,
change in stonefly abundance or taxonomic composition
is often the first indication of water quality degradation.
Most biomonitoring programs identify stoneflies to the
taxonomic resolution of Family, although when expertise
is available Genus-level (and occasionally Species-level)
identification is possible. Unfortunately, because of con-
straints on time, budgets, and availability of expertise,
some biomonitoring programs fail to resolve stoneflies
(as well as other taxa) below the level of Order. This
results in a considerable loss of information and, poten-
tially, in the failure to detect changes in water quality.

In addition to its practical importance, the auto-
mated recognition of stoneflies raises many fundamental
computer vision challenges. Stonefly larvae are highly-
articulated objects with many sub-parts (legs, antennae,
tails, wing pads, etc.) and many degrees of freedom.

Some taxa exhibit interesting patterns on their dorsal
sides, but others are not patterned. Some taxa are dis-
tinctive, others are very difficult to identify. Finally, as
the larvae repeatedly molt, their size and color change.
Immediately after molting, they are light colored, and
then they gradually darken. This variation in size, color,
and pose means that simple computer vision methods
that rely on placing all objects in a standard pose can-
not be applied here. Instead, we need methods that can
handle significant variation in pose, size, and coloration.

To address these challenges, we have adopted the
bag-of-features approach [7–9]. This approach extracts
a bag of region-based “features” from the image without
regard to their relative spatial arrangement. These fea-
tures are then summarized as a feature vector and classi-
fied via state-of-the-art machine learning methods. The
primary advantage of this approach is that it is invariant
to changes in pose and scale as long as the features can
be reliably detected. Furthermore, with an appropriate
choice of classifier, not all features need to be detected
in order to achieve high classification accuracy. Hence,
even if some features are occluded or fail to be detected,
the method can still succeed. An additional advantage is
that only weak supervision (at the level of entire images)
is necessary during training.

A potential drawback of this approach is that it ig-
nores some parts of the image, and hence loses some
potentially useful information. In addition, it does not
capture the spatial relationships among the detected re-
gions. We believe that this loss of spatial information
is unimportant in this application, because all stoneflies
share the same body plan and, hence, the spatial layout
of the detected features provides very little discrimina-
tive information.

The bag-of-features approach involves five phases: (a)
region detection, (b) region description, (c) region clas-
sification into features, (d) combination of detected fea-
tures into a feature vector, and (e) final classification
of the feature vector. For region detection, we employ
three different interest operators: (a) the Hessian-affine
detector [10], (b) the Kadir entropy detector [11], and
(c) a new detector that we have developed called the
principal curvature-based region detector (PCBR). The
combination of these three detectors gives better perfor-
mance than any single detector or pair of detectors. The
combination was critical to achieving good classification
rates.

All detected regions are described using Lowe’s SIFT
representation [1]. At training time, a Gaussian mixture
model (GMM) is fit to the set of SIFT vectors, and each
mixture component is taken to define a feature. The
GMM can be interpreted as a classifier that, given a new
SIFT vector, can compute the mixture component most
likely to have generated that vector. Hence, at classifica-
tion time, each SIFT vector is assigned to the most likely
feature (i.e., mixture component). A histogram consist-
ing of the number of SIFT vectors assigned to each fea-
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ture is formed. A separate GMM, set of features, and
feature vector is created for each of the three region de-
tectors and each of the stonefly taxa. These feature vec-
tors are then concatenated prior to classification. The
steps mentioned above form the concatenated feature
histogram (CFH) method, which allows the use of gen-
eral classifiers from the machine learning literature. The
final labeling of the specimens is performed by an en-
semble of logistic model trees [12], where each tree has
one vote.

The rest of the paper is organized as follows. Sec-
tion 2 discusses existing systems for insect recognition
as well as relevant work in generic object recognition
in computer vision. Section 3 introduces our PCBR de-
tector and its underlying algorithms. In Section 4, we
describe our insect recognition system including the ap-
paratus for manipulating and photographing the spec-
imens and the algorithms for feature extraction, learn-
ing, and classification. Section 5 presents a series of ex-
periments to evaluate the effectiveness of our classifica-
tion system and discusses the results of those experi-
ments. Finally, Section 6 draws some conclusions about
the overall performance of our system and the prospects
for rapid-throughput insect population counting.

2 Related Work

We divide our discussion of related work into two parts.
First, we review related work in insect identification meth-
ods. Then we discuss work in generic object recognition.

2.1 Automated Insect Identification Systems

A few other research groups have developed systems that
apply computer vision methods to discriminate among
a defined set of insect species.

2.1.1 Automated Bee Identification System (ABIS). The
ABIS system [13] performs identification of bees based
on features extracted from their forewings. Each bee is
manually positioned and a photograph of its forewing is
obtained in a standard pose. From this image, the wing
venation is identified, and a set of key wing cells (areas
between veins) are determined. These are used to align
and scale the images. Then geometric features (lengths,
angles, and areas) are computed. In addition, appear-
ance features are computed from small image patches
that have been smoothed and normalized. Classification
is performed using Support Vector Machines and Kernel
Discriminant Analysis.

This project has obtained very good results, even
when discriminating between bee species that are known
to be hard to classify. It has also overcome its initial re-
quirement of expert interaction with the image for fea-
ture extraction; although it still has the restriction of

complex user interaction to manipulate the specimen for
the capture of the wing image. The ABIS feature ex-
traction algorithm incorporates prior expert knowledge
about wing venation. This facilitates the bee classifica-
tion task; but makes it very specialized. This special-
ization precludes a straightforward application to other
insect identification tasks.

2.1.2 Digital Automated Identification SYstem (DAISY).
DAISY [14] is a general-purpose identification system

that has been applied to several arthropod identification
tasks including mosquitoes (Culex p. molestus vs. Culex
p. pipiens), palaeartic ceratopogonid biting midges, oph-
ionines (parasites of lepidoptera), parasitic wasps in the
genus Enicospilus, and hawk-moths (Sphingidae) of the
genus Xylophanes. Unlike our system, DAISY requires
user interaction for image capture and segmentation, be-
cause specimens must be aligned in the images. This
might hamper DAISY’s throughput and make its ap-
plication infeasible in some monitoring tasks where the
identification of large samples is required.

In its first version, DAISY built on the progress made
in human face detection and recognition via eigen-images
[15]. Identification proceeded by determining how well
a specimen correlated with an optimal linear combina-
tion of the principal components of each class. This ap-
proach was shown to be too computationally expensive
and error-prone.

In its second version, the core classification engine
is based on a random n-tuple classifier (NNC) [16] and
plastic self organizing maps (PSOM). It employs a pat-
tern to pattern correlation algorithm called the normal-
ized vector difference (NVD) algorithm. DAISY is capa-
ble of handling hundreds of taxa and delivering the iden-
tifications in seconds. It also makes possible the addition
of new species with only a small computational cost. On
the other hand, the use of NNC imposes the require-
ment of adding enough instances of each species. Species
with high intra-class variability require many training
instances to cover their whole appearance range.

2.1.3 SPecies IDentification, Automated and web acces-
sible (SPIDA-web). SPIDA-web [4] is an automated
identification system that applies neural networks for
species classification from wavelet encoded images. The
prototype SPIDA-web system has been tested on the spi-
der family Trochanteriidae (consisting of 119 species in
15 genera) using images of the external genitalia.

SPIDA-web’s feature vector is built from a subset
of the components of the wavelet transform using the
Daubechines 4 function. The spider specimen has to be
manipulated by hand, and the image capture, prepro-
cessing and region selection also require direct user inter-
action. The images are oriented, normalized, and scaled
into a 128x128 square prior to analysis. The specimens
are classified in a hierarchical manner, first to genus and
then to species. The classification engine is composed of
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a trained neural network for each species in the group.
Preliminary results for females indicate that SPIDA is
able to classify images to genus level with 95-100% accu-
racy. The results of species-level classification still have
room for improvement; most likely due to the lack of
enough training samples.

2.1.4 Summary of previous insect identification work.
This brief review shows that existing approaches rely on
manual manipulation and image capture of each spec-
imen. Some systems also require the user to manually
identify key image features. To our knowledge, no system
exists that identifies insects in a completely automated
way, from the manipulation of the specimens to the final
labeling. The goal of our research is to achieve full rapid-
throughput automation, which we believe is essential to
supporting routine bio-monitoring activities. One key to
doing this is to exploit recent developments in generic
object recognition, which we now discuss.

2.2 Generic Object Recognition

The past decade has seen the emergence of new ap-
proaches to object-class recognition based on region de-
tectors, local features, and machine learning. These meth-
ods are able to recognize objects from images taken in
non-controlled environments with variability in the posi-
tion and orientation of the objects, with cluttered back-
grounds, and with some degree of occlusion. Further-
more, these methods only require supervision at the level
of whole images—the position and orientation of the ob-
ject in each training image does not need to be speci-
fied. These approaches compare favorably with previous
global-feature approaches, for example [17,18].

The local feature approaches begin by applying an
interest operator to identify “interesting regions”. These
regions must be reliably detected in the sense that the
same region can be found in images taken under dif-
ferent lighting conditions, viewing angles, and object
poses. Further, for generic object recognition, these de-
tected regions must be robust to variation from one ob-
ject to another within the same generic class. Addition-
ally, the regions must be informative—that is, they must
capture properties that allow objects in different object
classes to discriminate from one another. Special effort
has been put into the development of affine-invariant re-
gion detectors to achieve robustness to moderate changes
in viewing angle. Current affine-invariant region detec-
tors can be divided into two categories: intensity-based
detectors and structure-based detectors. The intensity-
based region detectors include the Harris-corner detec-
tor [19], the Hessian-affine detector [20,10], the maxi-
mally stable extremal region detector (MSER) [21], the
intensity extrema-based region detector (IBR) [22], and
the entropy-based region detector [11]. Structure-based
detectors include the edge-based region detector (EBR)

[23] and the scale-invariant shape feature (SISF) detec-
tor [24].

Upon detection, each region must then be charac-
terized as a vector of features. Several methods have
been employed for this purpose, but by far the most
widely-used region representation is David Lowe’s 128-
dimensional SIFT descriptor [1], which is based on his-
tograms of local intensity gradients. Other region de-
scriptors can be computed including image patches (pos-
sibly after smoothing and down-sampling), photometric
invariants, and various intensity statistics (mean, vari-
ance, skewness, kurtosis).

Once the image has been converted into a collection
of vectors—where each vector is associated with a partic-
ular region in the image—two general classes of methods
have been developed for predicting the object class from
this information. The first approach is known as the “bag
of features” approach, because it disregards the spatial
relationships among the SIFT vectors and treats them
as an un-ordered bag of feature vectors. The second ap-
proach is known as the “constellation method”, because
it attempts to capture and exploit the spatial relation-
ships among the detected regions. (Strictly speaking, the
term constellation model refers to the series of models
developed by Burl, Weber and Perona [25].)

In the bag-of-features approach, the standard method
is to take all of the SIFT vectors from the training data
and cluster them (possibly preceded by a dimensionality-
reduction step such as PCA). Each resulting cluster is
taken to define a “keyword”, and these keywords are
collected into a codebook or dictionary [26–28]. The dic-
tionary can then be applied to map each SIFT vector
into a keyword, and therefore, to map the bag of SIFT
features into a bag of keywords.

The final step of our approach is to train a classifier
to assign the correct class label to the bag of keywords.
The most direct way to do this is to convert the bag into
a feature vector and apply standard machine learning
methods such as AdaBoost [29]. One simple method is to
compute a histogram where the i-th element corresponds
to the number of occurrences in the image of the i-th
keyword.

Another classification strategy is to employ distance-
based learning algorithms such as the nearest-neighbor
method. This involves defining a distance measure be-
tween two bags of keywords such as the minimum dis-
tance between all keywords from one bag and all key-
words from the other bag.

Given a new image to classify, the process of finding
interesting regions, representing them as SIFT vectors,
mapping those to keywords, and classifying the resulting
bags of keywords is repeated.

In the constellation method, several techniques have
been applied for exploiting the spatial layout of the de-
tected regions. The star-shaped model [30,31] is a com-
mon choice, because it is easy to train and evaluate.
Fergus et al. [32] employ a generative model of the (x, y)
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distribution of the regions as a 2-dimensional Gaussian
distribution. More complex methods apply discrimina-
tive graphical models to capture the relations between
the detected regions [33–35].

3 Principal Curvature-Based Region Detector

Before describing our stonefly recognition system, we
first introduce our new Principal Curvature-Based Re-
gion (PCBR) detector. This detector is of independent
interest and we have demonstrated elsewhere that it can
be applied to a wide range of object recognition prob-
lems [36].

The PCBR detector grew out of earlier experiments
that apply Steger’s “curvilinear” detector [37] to the
stonefly images. The curvilinear detector finds line struc-
tures (either curved or straight) such as roads in aerial or
satellite images or blood vessels in medical scans. When
applied to stonefly images, the detector provides a kind
of sketch of the characteristic patterning that appears on
the insects’ dorsal side. Further, these curvilinear struc-
tures can be detected over a range of viewpoints, scales,
and illumination changes.

However, in order to produce features that readily
map to image regions, which can then be used to build
a descriptor (such as SIFT), our PCBR detector ulti-
mately uses only the first steps of Steger’s curvilinear
detector process—that of computing the principal eigen-
value of the Hessian matrix at each pixel. We note that
since both the Hessian matrix and the related second
moment matrix quantify a pixel’s local image geome-
try, they have also been applied in several other inter-
est operators such as the Harris [19], Harris-affine [38],
and Hessian-affine [10] detectors to find image positions
where the local image geometry is changing in more than
one direction. Likewise, Lowe’s maximal difference-of-
Gaussian (DoG) detector [1] also uses components of the
Hessian matrix (or at least approximates the sum of the
diagonal elements) to find points of interest. However,
we also note that our PCBR detector is quite different
from these other methods. Rather than finding interest
“points”, our method applies a watershed segmentation
to the principal curvature image to find “regions” that
are robust to various image transformations. As such,
our PCBR detector combines differential geometry—as
used by the Harris- and Hessian-affine interest point
detectors—with concepts found in region-based struc-
ture detectors such as EBR [23] or SISF [24].

3.1 A Curvature-Based Region Detector

Given an input image (Figure 1a), our PCBR region
detector can be summarized as follows:

1. Compute the Hessian matrix image describing each
pixel’s local image curvature.

2. Form the principal curvature image by extracting the
largest positive eigenvalue from each pixel’s Hessian
matrix (Figure 1b).

3. Apply a gray scale morphological closing on the prin-
cipal curvature image to remove noise and threshold
the resulting image to obtain a “clean” binary prin-
cipal curvature image (Figure 1c).

4. Segment the clean image into regions using the wa-
tershed transform (Figures 1d and 1e).

5. Fit an ellipse to each watershed regions to produce
the detected interest regions (Figure 1f).

Each of these steps is detailed in the following para-
graphs.

3.2 Principal Curvature Image

There are two types of structures that have high curva-
ture in one direction: edges and curvilinear structures.
Viewing an image as an intensity surface, the curvilin-
ear structure detector looks for ridges and valleys of this
surface. These correspond to white lines on black back-
grounds or black lines on white backgrounds. The width
of the detected line is determined by the Gaussian scale
used to smooth the image (see Eq. 1 below). Ridges and
valleys have large curvature in one direction, edges have
high curvature in one direction and low curvature in
the orthogonal direction, and corners (or highly curved
ridges and valleys) have high curvature in two directions.
The shape characteristics of the surface can be described
by the Hessian matrix, which is given by

H(x, σD) =
[

Ixx(x, σD) Ixy(x, σD)
Ixy(x, σD) Iyy(x, σD)

]
(1)

where Ixx, Ixy and Iyy are the second-order partial deriva-
tives of the image and σD is the Gaussian scale at which
the second partial derivatives of the image are computed.
The interest point detectors mentioned previously [19,
38,10] apply the Harris measure (or a similar metric [1])
to determine a point’s saliency. The Harris measure is
given by

det(A) − k · tr2(A) > threshold (2)

where det is the determinant, tr is the trace, and the ma-
trix A is either the Hessian matrix, H, (for the Hessian-
affine detector) or the second moment matrix,

M =
[

I2
x IxIy

IxIy I2
y

]
, (3)

for the Harris or Harris-affine detectors. The constant k
is typically between 0.03 and 0.06 with 0.04 being very
common. The Harris measure penalizes (i.e., produces
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Regions defined by principal curvature. (a) The original, (b) principal curvature, and (c) cleaned binary images. The
resulting (d) boundaries and (e) regions that result by applying the watershed transform to (c). (f) The final detected regions
created by fitting an ellipse to each region.

low values for) “long” structures for which the first or
second derivative in one particular orientation is very
small. One advantage of the Harris metric is that it does
not require explicit computation of the eigenvalue or
eigenvectors. However, computing the eigenvalues and
eigenvectors for a 2× 2 matrix requires only a single Ja-
cobi rotation to eliminate the off-diagonal term, Ixy, as
noted by Steger [37].

Our PCBR detector complements the previous inter-
est point detectors. We abandon the Harris measure and
exploit those very long structures as detection cues. The
principal curvature image is given by either

P (x) = max(λ1(x), 0) (4)

or
P (x) = min(λ2(x), 0) (5)

where λ1(x) and λ2(x) are the maximum and minimum
eigenvalues, respectively, of H at x. Eq. 4 provides a
high response only for dark lines on a light background
(or on the dark side of edges) while Eq. 5 is used to detect
light lines against a darker background. We do not take
the largest absolute eigenvalue since that would produce
two responses for each edge. For our stonefly project,
we have found that the patterning on the stonefly dor-
sal side is better characterized by the dark lines and as
such we apply Eq. 4. Figure 1(b) shows an eigenvalue
image that results from applying Eq. 4 to the grayscale
image derived from Fig. 1(a). We utilize the principle
curvature image to find the stable regions via watershed
segmentation [39].

3.3 Watershed Segmentation

Our detector depends on a robust watershed segmen-
tation. A main problem with segmentation via the wa-
tershed transform is its sensitivity to noise and image

(a) (b)

Fig. 2 (a) Watershed segmentation of original eigenvalue
image (Fig. 1b). (b) Detection results using the “clean” prin-
cipal curvature image (Fig. 1c).

variations. Figure 2(a) shows the result of applying the
watershed algorithm directly to the eigenvalue image
(shown in Fig. 1(b)). Many of the small regions are due
to noise or other small, unstable image variations. To
achieve a more stable watershed segmentation, we first
apply a grayscale morphological closing followed by hys-
teresis thresholding. The grayscale morphological closing
operation is defined as

f • b = (f ⊕ b) � b (6)

where f is the image (P from Eq. 4 for our applica-
tion), b is a disk-shaped structuring element, and ⊕ and
� are the grayscale dilation and erosion, respectively.
The closing operation removes the small “potholes” in
the principal curvature terrain, thus eliminating many
local minima that result from noise and would otherwise
produce watershed catchment basins.

However, beyond the small (in terms of area of in-
fluence) local minima, there are other minima that have
larger zones of influence and are not reclaimed by the
morphological closing. Some of these minima should in-
deed be minima since they have a very low principal
curvature response. However, other minima have a high
response but are surrounded by even higher peaks in the
principle curvature terrain. A primary cause for these
high “dips” between ridges is that the Gaussian scale
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used to compute the Hessian matrix is not large enough
to match the thickness of the line structure; hence the
second derivative operator produces principal curvature
responses that tend toward the center of the thick line
but don’t quite meet up. One solution to this problem is
to use a multiscale approach and try to estimate the best
scale to apply at each pixel. Unfortunately, this would
require that the Hessian be applied at many scales to
find the single characteristic scale for each pixel. Instead,
we choose to compute the Hessian at just a few scales
(σD = 1, 2, 4) and then use eigenvector-flow hysteresis
thresholding to fill in the gaps between scales.

In eigenvalue-flow hysteresis thresholding, there is
both a high and a low threshold—just as in traditional
hysteresis thresholding. For this application, we have set
the high threshold at 0.04 to indicate strong principal
curvature response. Pixels with a strong response act as
seeds that expand out to include connected pixels that
are above the low threshold. Unlike traditional hysteresis
thresholding, our low threshold is a function of the sup-
port each pixel’s major eigenvector receives from neigh-
boring pixels. Of course, we want the low pixel to be
high enough to avoid over-segmentation and low enough
to prevent ridge lines from fracturing. As such, we choose
our low threshold on a per-pixel basis by comparing the
direction of the major (or minor) eigenvector to the di-
rection of the adjacent pixels’ major (or minor) eigen-
vectors. This can be done by simply taking the absolute
value of the inner (or dot) product of a pixel’s normal-
ized eigenvector with that of each neighbor. The inner
product is 1 for vectors pointing in the same direction
and 0 for orthogonal vectors. If the average dot prod-
uct over all neighbors is high enough, we set the low to
high threshold ratio to 0.2 (giving an absolute threshold
of 0.04 · 0.2 = 0.008); otherwise the low to high ratio is
0.7 (for an absolute low threshold of 0.028). These ra-
tios were chosen based on experiments with hundreds of
stonefly images.

Figure 3 illustrates how the eigenvector flow supports
an otherwise weak region. The red arrows are the major
eigenvectors and the yellow arrows are the minor eigen-
vectors. To improve visibility, we draw them at every 4
pixels. At the point indicated by the large white arrow,
we see that the eigenvalue magnitudes are small and the
ridge there is almost invisible. Nonetheless, the direction
of the eigenvectors are quite uniform. This eigenvector-
based active thresholding process yields better perfor-
mance in building continuous ridges and in filling in scale
gaps between ridges, which results in more stable regions
(Fig. 2(b)).

The final step is to perform the watershed transform
on the clean binary image. Since the image is binary,
all black (or 0-valued) pixels become catchment basins
and the midline of the thresholded white ridge pixels po-
tentially become watershed lines if it separates two dis-
tinct catchment basins. After performing the watershed
transform, the resulting segmented regions are fit with

ellipses, via PCA, that have the same second-moment as
these watershed regions. These ellipses then define the
final interest regions of the PCBR detector (Fig. 1(f)).

Fig. 3 Illustration of how the eigenvector flow is used to
support weak principal curvature response.

4 Stonefly Identification System

The goal of our work is to provide a rapid-throughput
system for classifying stonefly larvae to the species level.
To achieve this, we have developed a system that com-
bines a mechanical apparatus for manipulating and pho-
tographing the specimens with a software system for pro-
cessing and classifying the resulting images. We now de-
scribe each of these components in turn.

4.1 Semi-Automated Mechanical Manipulation and
Imaging of Stonefly Larvae

The purpose of the hardware system is to speed up the
image capture process in order to make bio-monitoring
viable and to reduce variability during image capture.
To achieve consistent, repeatable image capture, we have
designed and constructed a software-controlled mechani-
cal stonefly larval transport and imaging apparatus that
positions specimens under a microscope, rotates them
to obtain a dorsal view, and photographs them with a
high-resolution digital camera.

Figure 4 shows the mechanical apparatus. The stone-
flies are kept in alcohol (70% ethanol) at all times, and
therefore, the apparatus consists of two alcohol reservoirs
connected by an alcohol-filled tube (having a diamond
cross-section). To photograph a specimen, it is manually
inserted into the arcylic well shown at the right edge of
the figure and then pumped through the tube. Infrared
detectors positioned part way along the tube detect the
passage of the specimen and cut off the pumps. Then
a side fluid jet “captures” the specimen in the field of
view of the microscope. When power to this jet is cut off,
the specimen settles to the bottom of the tube where it
can be photographed. The side jet can be activated re-
peatedly to spin the specimen to obtain different views.
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(a) (b)

Fig. 4 (a) Prototype mirror and transportation apparatus. (b) Entire stonefly transportation and imaging setup (with micro-
scope and attached digital camera, light boxes, and computer controlled pumps for transporting and rotating the specimen.

Once a suitable image has been obtained (a decision cur-
rently made by the human operator), the specimen is
then pumped out of the tube and into the plexiglass well
at the left edge of the figure. For this project, a “suitable
image” is one that gives a good back (dorsal side) view
of the specimen. In future work, we plan to construct a
“dorsal view detector” to automatically determine when
a good dorsal image has been obtained. In addition, fu-
ture versions of the apparatus will physically sort each
specimen into an appropriate bin based on the output of
the recognizer.

Figure 4(b) shows the apparatus in place under the
microscope. Each photograph taken by the camera cap-
tures two images at a 90 degree separation via a set
of mirrors. The original purpose of this was to support
3D reconstruction of the specimens, but for the work
described in this paper, it doubles the probability of ob-
taining a good dorsal view in each shot.

All images are captured using a QImaging MicroPub-
lisher 5.0 RTV 5 megapixel color digital camera. The dig-
ital camera is attached to a Leica MZ9.5 high-performan-
ce stereo microscope at 0.63x magnification. We use a
0.32 objective on the microscope to increase the field of
view, depth of field, and working distance. Illumination
is provided by gooseneck light guides powered by Volpi
V-Lux 1000 cold light sources. Diffusers installed on the
guides reduce glare, specular reflections, and hard shad-
ows. Care was taken in the design of the apparatus to
minimize the creation of bubbles in the alcohol, as these
could confuse the recognizer.

With this apparatus, we can image a few tens of spec-
imens per hour. Figure 6 shows some example images
obtained using this stonefly imaging assembly.

Table 1 Dictionary Construction. D is the number of region
detectors (3 in our case), and K is the number of stonefly taxa
to be recognized (4 in our case)

Dictionary Construction

For each detector d = 1, . . . , D
For each class k = 1, . . . , K

Let Sd,k be the set of SIFT vectors that results
from applying detector d to all cluster images from
class k.

Fit a Gaussian mixture model to Sd,k to obtain a
set of mixture components {Cd,k,�}, � = 1, . . . , L.

The GMM estimates the probability of each SIFT
vector s ∈ Sd,k as

P (s) =

LX

�=1

Cd,k,�(s | μd,k,�,Σd,k,�)P (�).

where Cd,k,� is a multi-variate Gaussian
distribution with mean μd,k,� and diagonal covariance
matrix Σd,k,�.

Define the keyword mapping function
keyd,k(s) = argmax� Cd,k,�(s | μd,k,�,Σd,k,�)

4.2 Training and Classification

Our approach to classification of stonefly larvae follows
closely the “bag of features” approach but with several
modifications and extensions. Figure 5 gives an overall
picture of the data flow during training and classifica-
tion, and Tables 1, 2, and 3 provide pseudo-code for our
method. We now provide a detailed description.

The training process requires two sets of images, one
for defining the dictionaries and one for training the clas-
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Fig. 5 Object recognition system overview: Feature genera-
tion and classification components

Table 2 Feature Vector Construction

Feature Vector Construction

To construct a feature vector for an image:
For each detector d = 1, . . . , D

For each class k = 1, . . . , K
Let Hd,k be the keyword histogram for detector d

and class k
Initialize Hd,k[�] = 0 for � = 1, . . . , L
For each SIFT vector s detected by detector d

increment Hd,k[keyd,k(s)]
Let H be the concatenation of the Hd,k histograms

for all d and k.

sifier. In addition, to assess the accuracy of the learned
classifier, we need a holdout test data set, as usual.
Therefore, we begin by partitioning the data at random
into three subsets: clustering, training, and testing.

As mentioned previously, we apply three region de-
tectors to each image: (a) the Hessian-affine detector
[10], (b) the Kadir Entropy detector [11], and (c) our
PCBR detector. We use the Hessian-affine detector im-

Table 3 Training and Classification. B is the number of
bootstrap iterations (i.e., the size of the classifier ensemble).

Training

Let T = {(Hi, yi)}, i = 1, . . . , N be the set of N training
examples where Hi is the concatenated histogram for
training image i and yi is the corresponding class
label (i.e., stonefly species).

For bootstrap replicate b = 1, . . . , B
Construct training set Tb by sampling N training

examples randomly with replacement from T
Let LMTb be the logistic model tree fitted to Tb

Classification

Given a test image, let H be the concatenated histogram
resulting from feature vector construction.

Let votes[k] = 0 be the number of votes for class k.
For b = 1, . . . , B

Let ŷb be the class predicted by LMTb applied to H .
Increment votes[ŷb].

Let ŷ = argmaxk votes[k] be the class with the most votes.
Predict ŷ.

plementation available from Mikolajczyk1 with a detec-
tion threshold of 1000. For the Kadir entrophy detector,
we use the binary code made available by the author2

and set the scale search range between 25 − 45 pixels
with the saliency threshold at 58. All the parameters for
the two detectors mentioned above are obtained empiri-
cally by modifying the default values in order to obtain
reasonable regions. For the PCBR detector, we detect
in three scales with σD = 1, 2, 4. The higher value in
hysteresis thresholding is 0.04. The two ratios applied
to get the lower thresholds are 0.2 and 0.7—producing
low thresholds of 0.008 and 0.028, respectively. Each de-
tected region is represented by a SIFT vector using Miko-
lajczyk’s modification to the binary code distributed by
David Lowe [1].

We then construct a separate dictionary for each re-
gion detector d and each class k. Let Sd,k be the SIFT
descriptors for the regions found by detector d in all
cluster-set images from class k. We fit a Gaussian mix-
ture model (GMM) to Sd,k via the Expectation-Maximi-
zation (EM) algorithm. A GMM with L components has
the form

p(s) =
L∑

�=1

Cd,k,�(s | μd,k,�,Σd,k,�)P (�) (7)

where s denotes a SIFT vector and the component prob-
ability distribution Cd,k,� is a multivariate Gaussian den-
sity function with mean μd,k,� and covariance matrix
Σd,k,� (constrained to be diagonal). Each fitted compo-
nent of the GMM defines one of L keywords. Given a

1 www.robots.ox.ac.uk/˜vgg/research/affine/
2 www.robots.ox.ac.uk/˜timork/salscale.html
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new SIFT vector s, we compute the corresponding key-
word � = keyd,k(s) by finding the � that maximizes
p(s | μd,k,�,Σd,k,�). Note that we disregard the mixture
probabilities P (�). This is equivalent to mapping s to the
nearest cluster center μ� under the Mahalobis distance
defined by Σ�.

We initialize EM by fitting each GMM component
to each cluster obtained by the k-means algorithm. The
k-means algorithm is initialized by picking random el-
ements. The EM algorithm iterates until the change in
the fitted GMM error from the previous iteration is less
than 0.05% or until a defined number of iterations is
reached. In practice, learning of the mixture almost al-
ways reaches the first stopping criterion (the change in
error is less that 0.05%).

After building the keyword dictionaries, we next con-
struct a set of training examples by applying the three
region detectors to each training image. We characterize
each region found by detector d with a SIFT descriptor
and then map the SIFT vector to the nearest keyword
(as describe above) for each class k using keyd,s. We ac-
cumulate the keywords to form a histogram Hd,k and
concatenate these histograms to produce the final fea-
ture vector. With D detectors, K classes, and L mixture
components, the number of attributes A in the final fea-
ture vector (i.e., the concatenated histogram) is D ·K ·L.

Upon constructing the set of training examples, we
next learn the classifier. We employ a state-of-the-art
ensemble classification method: bagged logistic model
trees. Bagging [40] is a general method for constructing
an ensemble of classifiers. Given a set T of labeled train-
ing examples and a desired ensemble size B, it constructs
B bootstrap replicate training sets Tb, b = 1, . . . , B.
Each bootstrap replicate is a training set of size |T | con-
structed by sampling uniformly with replacement from
T . The learning algorithm is then applied to each of
these replicate training sets Tb to produce a classifier
LMTb. To predict the class of a new image, each LMTb

is applied to the new image and the predictions vote
to determine the overall classification. The ensemble of
LMTs classifier only interacts with the feature vectors
generated by the CFH method.

Our chosen learning algorithm is the logistic model
tree (LMT) method of Landwehr, Hall, and Frank [12].
An LMT has the structure of a decision tree where each
leaf node contains a logistic regression classifier. Each
internal node tests the value of one chosen feature from
the feature vector against a threshold and branches to
the left child if the value is less than the threshold and
to the right child if the value is greater than or equal to
the threshold. LMTs are fit by the standard top-down
divide-and-conquer method employed by CART [41] and
C4.5 [42]. At each node in the decision tree, the algo-
rithm must decide whether to introduce a split at that
point or make the node into a leaf (and fit a logistic re-
gression model). This choice is made by a one-step looka-
head search in which all possible features and thresholds

Table 4 Specimens and images employed in the study

Taxon Specimens Images

Calineuria 85 400
Doroneuria 91 463
Hesperoperla 58 253
Yoraperla 29 124

are evaluated to see which one will result in the best
improvement in the fit to the training data. In standard
decision trees, efficient purity measures such as the GINI
index or the information gain can be employed to predict
the quality of the split. In LMTs, it is instead necessary
to fit a logistic regression model to the training examples
that belong to each branch of the proposed split. This
is computationally expensive, although the expense is
substantially reduced via a clever incremental algorithm
based on logit-boost [43]. Thorough benchmarking ex-
periments show that LMTs give robust state-of-the-art
performance [12].

5 Experiments and Results

We now describe the series of experiments carried out
to evaluate our system. We first discuss the data set
and and show some example images to demonstrate the
difficulty of the task. Then we present the series of ex-
periments and discuss the results.

5.1 Stonefly Dataset

We collected 263 specimens of four stonefly taxa from
freshwater streams in the mid-Willamette Valley and
Cascade Range of Oregon: the species Calineuria califor-
nica (Banks), the species Doroneuria baumanni Stark &
Baumann, the species Hesperoperla pacifica (Banks), and
the genus Yoraperla. Each specimen was independently
classified by two experts, and only specimens that were
classified identically by both experts were considered in
the study. Each specimen was placed in its own vial with
an assigned control number and then photographed us-
ing the apparatus described in Section 4. Approximately
ten photos were obtained of each specimen, which yields
20 individual images. These were then manually exam-
ined, and all images that gave a dorsal view within 30
degrees of vertical were selected for analysis. Table 4
summarizes the number of specimens and dorsal images
obtained.

A potential flaw in our procedure is that the speci-
men vials tended to be grouped together by taxon (i.e.,
several Calineurias together, then several Doroneurias,
etc.), so that in any given photo session, most of the
specimens being photographed belong to a single taxon.
This could introduce some implicit cues (e.g., lighting,
bubbles, scratches) that might permit the learning algo-
rithm to “cheat”. The apparatus constrains the lighting
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so that it is very consistent in all sessions. We did detect
some bubbles in the images. In cases where the region
detectors found those bubbles, we manually remove the
detections to ensure that they are not influencing the
results.

Figure 6 shows some of the images collected for the
study. Note the variety of colors, sizes, and poses. Note
also that Yoraperla, which is in the family Peltoperl-
idae, is quite distinctive in color and shape. The other
three taxa, which are all in the family Perlidae, are quite
similar to each other, and the first two (Calineuria and
Doroneuria) are exceedingly difficult to distinguish. This
is emphasized in Figure 7, which shows closeup dorsal
views. To verify the difficulty of discriminating these two
taxa, we conducted an informal study that tested the
ability of humans to separate Calineuria and Doroneuria.
A total of 26 students and faculty from Oregon State
University were allowed to train on 50 randomly-selected
images of Calineuria and Doroneuria, and were subse-
quently tested with another 50 images. Most of the sub-
jects (21) had some prior entomological experience. The
mean score was 78.6% correctly identified (std. dev. =
8.4). There was no statistical difference between the per-
formance of entomologists and non-entomologists (Wil-
coxon two-sample test [44], W = 57.5, p ≤ 0.5365).

Given the characteristics of the taxa, we defined three
discrimination tasks, which we term CDHY, JtHY, and
CD as follows:

CDHY: Discriminate among all four taxa.

JtHY: Merge Calineuria and Doroneuria to define a sin-
gle class, and then discriminate among the resulting
three classes.

CD: Focus on discriminating only between Calineuria
and Doroneuria.

The CDHY task assesses the overall performance of the
system. The JtHY task is most relevant to biomonitor-
ing, since Calineuria and Doroneuria have identical pol-
lution tolerance levels. Hence, discriminating between
them is not critical for our application. Finally, the CD
task presents a very challenging objective recognition
problem, so it is interesting to see how well our method
can do when it focuses only on this two-class problem.

Performance on all three tasks is evaluated via three-
fold cross-validation. The images are randomly parti-
tioned into three equal-sized sets under the constraint
that all images of any given specimen were required to be
placed in the same partition. In addition, to the extent
possible, the partitions are stratified so that the class
frequencies are the same across the three partitions. Ta-
ble 5 gives the number of specimens and images in each
partition.

In each “fold” of the cross-validation, one partition
serves as the clustering data set for defining the dictio-

Table 5 Partitions for 3-fold cross-validation.

Partition # Specimens # Images

1 87 413

2 97 411

3 79 416

naries, a second partition serves as the training data set,
and the third partition serves as the test set.

Our approach requires specification of the following
parameters:

– the number L of mixture components in the Gaus-
sian mixture model for each dictionary,

– the number B of bootstrap replicates for bagging,

– the minimum number M of training examples in the
leaves of the logistic model trees, and

– the number I of iterations of logit boost employed
for training the logistic model trees.

These parameters are set as follows. L is determined
through a series of EM fitting procedures for each species.
We increment the number of mixture components until
the GMM is capable of modeling the data distribution—
when the GMM achieves a relative fitting error below
5% in less than 100 EM iterations. The resulting values
of L are 90, 90, 85 and 65 for Calineuria, Doroneuria,
Hesperoperla, and Yoraperla, respectively. Likewise, B is
determined by evaluating a series of bagging ensembles
with different numbers of classifiers on the same training
set. The number of classifiers in each ensemble is incre-
mented by two until the training error starts to increase,
at which point B is simply assigned to be five less than
that number. The reason we assign B to be 5 less than
the number that causes the training error to increase—
rather than simply assign it to the largest number that
produces the lowest error—is that the smaller number
of boostrap replicates helps to avoid overfitting. Table 6
shows the value of B for each of the three tasks. The
minimum number M of instances that each leaf in the
LMT requires to avoid pruning is set to 15, which is the
default value for the LMT implementation recommended
by the authors. The number of logit boost iterations I
is set by internal cross-validation within the training set
while the LMT is being induced.

Table 6 Number of bagging iterations for each experiments.

Experiment Bagging Iterations B

4-species: CDHY 20

3-species: JtHY 20

2-species: CD 18
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(a) (b) (c) (d)

Fig. 6 Example images of different stonefly larvae species. (a) Calineuria, (b) Doroneuria, (c) Hesperoperla and (d) Yoraperla.

(a) (b) (c) (d)

Fig. 7 Images visually comparing Calineuria and Doroneuria. (a) Calineuria, (b) Doroneuria, (c) Calineuria detail and (d)
Doroneuria detail.

5.2 Results

We designed our experiments to achieve two goals. First,
we wanted to see how well the CFH method (with three
region detectors) coupled with an ensemble of LMTs per-
forms on the three recognition tasks. To establish a ba-
sis for evaluation, we also apply the method of Opelt, et
al. [45], which is currently one of the best object recog-
nition systems. Second, we wanted to evaluate how each
of the three region detectors affects the performance of
the system. To achieve this second goal, we train our
system using 7 different configurations corresponding to
training with all three detectors, all pairs of detectors,
and all individual detectors.

5.2.1 Overall Results Table 7 shows the classification
rates achieved by the CFH method on the three dis-
crimination tasks. Tables 8, 9, and 10 show the confusion
matrices for the three tasks. On the CDHY task, our sys-
tem achieves 82% correct classifications. The confusion

matrix shows that it achieves near perfect recognition
of Yoraperla. It also recognizes Hesperoperla very well
with only a few images misclassified as Calineuria or
Doroneuria. As expected, the main difficulty is to dis-
criminate Calineuria and Doroneuria. When these two
classes are pooled in the JtHY task, performance reaches
95% correct, which is excellent. It is interesting to note
that if we had applied the four-way classifier and then
pooled the predictions of the classifiers, the 3-class per-
formance would have been slightly better (95.48% ver-
sus 95.08%). The difference is that in the JtHY task, we
learn a combined dictionary for the merged Calineuria
and Doroneuria (CD) class, whereas in the 4-class task,
each taxon has its own dictionaries.

A similar phenomenon occurs in the 2-class CD task.
Our method attains 79% correct classification when train-
ed on only these two tasks. If instead, we applied the
CDHY classifiers and treated predictions for Hesperop-
erla and Yoraperla as errors, the performance would be
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Table 7 Percentage of images correctly classified by our sys-
tem with all three region detectors along using a 95% confi-
dence interval.

Task Accuracy [%]

CDHY 82.42 ± 2.12

JtHY 95.40 ± 1.16

CD 79.37 ± 2.70

Table 8 CDHY confusion matrix of the combined Kadir,
Hessian-affine and PCBR detectors

predicted as ⇒ Cal. Dor. Hes. Yor.

Calineuria 315 79 6 0

Doroneuria 80 381 2 0

Hesperoperla 24 22 203 4

Yoraperla 1 0 0 123

Table 9 JtHY confusion matrix of the combined Kadir,
Hessian-affine and PCBR detectors

predicted as ⇒ Joint CD Hes. Yor.

Joint CD 857 5 1

Hesperoperla 46 203 4

Yoraperla 0 1 123

Table 10 CD confusion matrix of the combined Kadir,
Hessian-affine and PCBR detectors

predicted as ⇒ Calineuria Doroneuria

Calineuria 304 96

Doroneuria 82 381

slightly better (79.61% versus 79.37%). These differences
are not statistically significant, but they do suggest that
in future work it might be useful to build separate dictio-
naries and classifiers for groups within each taxon (e.g.,
first cluster by size and color) and then map the result-
ing predictions back to the 4-class task. On this binary
classification task, our method attains 79% correct clas-
sification, which is approximately equal to the mean for
human subjects with some prior experience.

Our system is capable of giving a confidence mea-
sure to each of the existing categories. We performed
a series of experiments where the species assignment is
thresholded by the difference between the two highest
confidence measures. In this series, we vary the thresh-
old from 0 to 1. If the difference is higher than the defined
threshold, the label of the highest is assigned otherwise
the specimen is declared as “uncertain”. Figure 8 shows
the plotting of the accuracy against the rejection rate.
The curves show us that if we reject around 30% of the
specimens, all the tasks will reach an accuracy higher
than 90%, even the CD task.

We also evaluate the performance of our classification
methodology relative to a competing method [45] on the
most difficult CD task using the same image features.
Opelt’s method is similar to our method in that it is also
based on ensemble learning principles (AdaBoost), and
it is also capable of combining multiple feature types for

Table 11 Comparison of CD classification rates using
Opelt’s method and our system with different combinations
of detectors. A

√
indicates the detector(s) used.

Hessian Kadir Accuracy[%]
Affine Entropy PCBR Opelt [45] CFH & LMTs√

60.59 70.10√
62.63 70.34√
67.86 79.03√ √ √
70.10 79.37

classification. We adapted Opelt’s Matlab implementa-
tion to our features and used the default parameter set-
tings given in the paper. The Euclidean distance metric
was used for the SIFT features and number of itera-
tions I was set to 100. Table 11 summarizes the classi-
fication rates. Our system provides 8 to 12% better ac-
curacy than Opelt’s method for all four combinations
of detectors. In addition, training Opelt’s classifier is
more computationally expensive than is training our sys-
tem. In particular, the complexity of computing Opelt’s
feature-to-image distance matrix is O(T 2R2D), where
T is the number of training images, R is the maximum
number of detected image regions in a single image, and
D = 128 is the SIFT vector dimension. The total num-
ber of detected training regions, T · R, is easily greater
than 20, 000) in this application. On the other hand,
training our system is much faster. The complexity of
building the LMT ensemble classifier (which dominates
the training computation) is O(T ·A · I), where A is the
number of histogram attributes and I is the number of
LMT induction iterations (typically in the hundreds).

5.2.2 Results for Multiple Region Detectors Table 12
summarizes the results of applying all combinations of
one, two, and three detectors to the CDHY, JtHY, and
CD tasks. The first three lines show that each detector
has unique strengths when applied alone. The Hessian-
affine detector works best on the 4-class CDHY task; the
Kadir detector is best on the 3-class JtHY task, and the
PCBR detector gives the best 2-class CD results. On
the pairwise experiments it appears that the Hessian-
affine and PCBR complement each other well. The best
pairwise results for the JtHY task is obtained by the
Kadir-Hessian pair; which appears to be better for tasks
that require an overall assessment of shape. Finally, the
combination of all three detectors gives the best results
on each task.

To understand the region detector results, it is help-
ful to look at their behaviors. Figures 9 and 10 show the
regions found by each detector on selected Calineuria
and Doroneuria specimens. The detectors behave in quite
different ways. The PCBR detector is very stable, al-
though it does not always identify all of the relevant
regions. The Kadir detector is also stable, but it finds a
very large number of regions, most of which are not rele-
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Fig. 8 Accuracy/Rejection curves for the three experiments with all the detectors combined while changing the confidence-
difference threshold

(a) (b) (c)

Fig. 9 Visual Comparison of the regions output by the three detectors on three Calineuria specimens. (a) Hessian-affine, (b)
Kadir Entropy, (c) PCBR

Table 12 Classification rates using our system with differ-
ent combinations of detectors. A

√
indicates the detector(s)

used.

Hessian Kadir Accuracy[%]
Affine Entropy PCBR CDHY JtHY CD√

73.14 90.32 70.10√
70.64 90.56 70.34√
71.69 86.21 79.03√ √
78.14 94.19 74.16√ √
80.48 93.79 78.68√ √
78.31 92.09 68.83√ √ √
82.42 95.40 79.37

vant. The Hessian-affine detector finds very good small-
scale regions, but its larger-scale detections are not use-
ful for classification. The PCBR detector focuses on the
interior of the specimens, whereas the other detectors

(especially Kadir) tend to find points on the edges be-
tween the specimens and the background. In addition to
concentrating on the interior, the regions found by the
PCBR detector are more “meaningful” in that they cor-
respond better to body parts. This may explain why the
PCBR detector did a better job on the CD task.

6 Conclusions and Future Work

This paper has presented a combined hardware-software
system for rapid-throughput classification of stonefly lar-
vae. The goal of the system is to perform cost-effective
bio-monitoring of freshwater streams. To this end, the
mechanical apparatus is capable of nearly unassisted ma-
nipulation and imaging of stonefly specimens while also
obtaining consistently high quality images. The generic
object recognition algorithms attain classification accu-
racy that is sufficiently good (82% for 4-classes; 95% for
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(a) (b) (c)

Fig. 10 Visual Comparison of the regions output by the three detectors on four Doroneuria specimens. (a) Hessian-affine,
(b) Kadir Entropy, (c) PCBR

3-classes) to support the application. By rejecting for
manual classification the specimens in which the confi-
dence level is not high enough; only a reasonable 30% of
the samples would require further processing while the
remaining identified specimens can reach an accuracy
above 90% on all the defined tasks.

We compared our CFH method to Opelt’s related
state-of-art method on the most difficult task, discrimat-
ing Calineuria from Doroneuria. The CFH method al-
ways achieved better performance. It is also worth notic-
ing that human subjects with some prior experience and
using the same images reached an accuracy equal to our
method. Finally, we described a new region detector,
the principal curvature-based region (PCBR) detector.
Our experiments demonstrated that PCBR is particu-
larly useful for discriminating between the two visually
similar species, and, as such provides an important con-
tribution in attaining greater accuracy.

There are a few details that must be addressed before
the system is ready for field testing. First, the mechan-
ical apparatus must be modified to include mechanisms
for sorting the specimens into bins after they have been
photographed and classified. Second, we need to develop
an algorithm for determining whether a good dorsal im-
age of the specimen has been obtained. We are currently
exploring several methods for this including training the
classifier described in this paper for the task. Third, we
need to evaluate the performance of the system on a
broader range of taxa. A practical bio-monitoring system
for the Willamette Valley will need to be able to recog-
nize around 8 stonefly taxa. Finally, we need to develop
methods for dealing with specimens that are not stone-

flies or that do not belong to any of the taxa that the
system is trained to recognize. We are studying SIFT-
based density estimation techniques for this purpose.

Beyond freshwater stream bio-monitoring, there are
many other potential applications for rapid-throughput
arthropod recognition systems. One area that we are
studying involves automated population counts of soil
mesofauna for soil biodiversity studies. Soil mesofauna
are small arthropods (mites, spiders, pseudo-scorpions,
etc.) that live in soils. There are upwards of 2000 species,
and the study of their interactions and population dy-
namics is critical for understanding soil ecology and soil
responses to different land uses. In our future work, we
will test the hypothesis that the methods described in
this paper, when combined with additional techniques
for shape analysis and classification, will be sufficient to
build a useful system for classifying soil mesofauna.
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