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ABSTRACT
Intelligent desktop assistants could provide more help for
users if they could learn models of the users’ workflows.
However, discovering desktop workflows is difficult because
they unfold over extended periods of time (days or weeks)
and they are interleaved with many other workflows because
of user multi-tasking. This paper describes an approach to
discovering desktop workflows based on rich instrumenta-
tion of information flow actions such as copy/paste, SaveAs,
file copy, attach file to email message, and save attachment.
These actions allow us to construct a graph whose nodes
are files, email messages, and web pages and whose edges
are these information flow actions. A class of workflows
that we call work procedures can be discovered by applying
graph mining algorithms to find frequent subgraphs. This
paper describes an algorithm for mining frequent closed con-
nected subgraphs and then describes the results of applying
this method to data collected from a group of real users.
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INTRODUCTION
Knowledge workers frequently change tasks, either by choice
or through interruptions [22]. With an increased number of
tasks and task switches, it becomes more and more difficult
for knowledge workers to keep track of the state of each
of their activities. Many attempts have been made to de-
velop effective ToDo managers, but these impose additional
overhead on desktop work and they do not capture many of
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the user’s activities [3]. One way to reduce this overhead
and increase the coverage of a ToDo manager would be if
the computer could automatically recognize which activities
were being executed and track their status in an intelligent
ToDo manager.

In our work on the TaskTracer system [7, 31], we took an ini-
tial step in this direction by applying machine learning meth-
ods to predict the current activity of the user based on the re-
sources (files, web pages, email messages) that the user ac-
cesses. This approach requires that the user explicitly name
each of his/her activities, which imposes additional overhead
and is more appropriate for larger chunks of activity such as
long-lived projects. An additional shortcoming of this ap-
proach is that it lacks an understanding of the state of the ac-
tivity, so it can’t tell whether a task is completed or ongoing,
nor can it provide useful reminders to the user about actions
that still need to be performed to complete the task. So while
the TaskTracer approach is very valuable for helping the user
recover from interruptions of long-duration activities, it does
not provide any support for managing to-do lists.

A significant portion of the desktop activity of knowledge
workers involves executing workflow procedures. These can
be formally prescribed procedures (e.g., submitting requests
for travel authorization) or informal, idiosyncratic procedures
(e.g., keeping track of fantasy football results). Suppose that
the computer had models of these workflows. With such
models, it would be able to detect when a new workflow in-
stance was initiated, track the current state of execution of
each workflow instance, and determine when the execution
was complete. This would allow it to automatically popu-
late and maintain an intelligent ToDo list for the knowledge
worker.

If the workflow models were sufficiently precise, they could
also provide the basis for partial automation of workflows.
For example, consider the simple workflow “provide com-
ments on a document”. In this workflow, a document arrives
as an email attachment. The user saves the document into
an appropriate folder, edits it (optionally saving it under a
new name), and then attaches it to a reply email. A smart
desktop assistant might be able to recognize the start of the
workflow by analyzing the initial email message. In which
case, it could place an entry on the ToDo list. When the user
was ready to work on this action item, the assistant could
provide a one-click way of opening the email message, sav-
ing the attachment, and opening the file. Later, after the file



had been edited and saved, it could provide one-click au-
tomation for opening the email message, initiating a reply,
and attaching the file to the reply message. These simple
automation steps could avoid the need for the user to find
the old email message, remember where the file was saved,
and so on. We hypothesize that such support could avoid
the need to resort to desktop search tools to remember and
re-access such “lost” items.

While this vision of an intelligent workflow assistant is very
attractive, it has one critical flaw: how can the computer
acquire detailed models of desktop workflows? Some re-
searchers have addressed this problem by providing easy
ways for users to define the workflow procedures themselves
[20]. We propose instead to automatically discover the work-
flows by observing the user’s desktop activity and detect-
ing repeated sequences of actions. This is very challenging
for a number of reasons. First, these workflows take place
over extended periods of time (days, weeks, months). Sec-
ond, they are interleaved with thousands of irrelevant actions
that either do not belong to any workflow or belong to other
workflows. Indeed, for a workflow such as “Review confer-
ence paper”, many instances of that workflow will be execut-
ing simultaneously. How can we detect and untangle these
interleaved instances?

In this paper, we present an approach based on capturing in-
formation flow actions (also called provenance links [27, 30,
12]). We define a work procedure as a directed graph whose
nodes are resources (files, email messages, web pages) and
whose arcs are actions such as SaveAs, copy/paste, save
email attachment, attach file to email, upload file to web
page, download file from web page, and so on. With suf-
ficient instrumentation of desktop applications, we can cap-
ture the complete set of these provenance links. This allows
us to capture the user’s desktop behavior as a large graph of
resources and provenance links. Each work procedure in-
stance is a connected subgraph in this graph. To discover
these instances, we extend an existing subgraph mining al-
gorithm to find frequently occurring subgraphs.

The information flow graph solves the problem of temporally-
extended interleaved work procedures. The provenance links
in the graph are the same regardless of whether the work pro-
cedure was executed in a single day or over many months.
And the topology of the graph does not depend on how mul-
tiple work procedure instances were interleaved. This leads
to a powerful savings in computation. Consider two work
procedure instances each involving 8 actions. There exist(
16
8

)
= 12, 870 possible interleavings of these actions, but

there is only one information flow graph.

To acquire the information flow graph, we employed the
TaskTracer system [7, 31]. TaskTracer already tracks ev-
ery resource (file, folder, web page, email message, email
contact) accessed by the user, so these provide the nodes in
the graph. To acquire the provenance links, we extended
TaskTracer to capture several kinds of provenance links (File
copy, File rename, Copy/Paste, SaveAs, Save Email Attach-
ment, Attach to Email, Download from web page, Upload to

web page). This does not capture all of the relevant prove-
nance links, so for this paper we performed additional auto-
matic analysis of the user’s resources to identify additional
links as described below.

The remainder of the paper is structured as follows. The
next section reviews related work. Then, we motivate the
work procedure discovery problem with some typical work
procedure cases and discuss its potential usage. Next, we
provide a brief overview of the activity management system
used for our research and present a user interface for display-
ing the provenance information. We describe our methods
for building the information graph, for finding frequent gen-
eralized closed patterns, and for assigning appropriate action
sequences. The last section presents experimental results on
the accuracy of the approach.

RELATED WORK
Several other researchers have worked on problems similar
to the one we address in this paper.

Business workflow mining. Traditionally, a workflow is de-
fined as a partial or total automation of a business process
in which a collection of activities must be executed by hu-
mans or machines according to certain procedural rules [1,
23, 14, 10]. Workflow management systems help to execute,
monitor and manage work process flow and execution. They
(partially) automate the definition, creation, execution, and
management of work processes through the use of software.
Their transaction logs record information of each executed
process. The activity of using computer software to examine
theses records and deriving various structural data results is
called workflow mining [10].

Our work procedure discovery problem can be thought as a
special case of the workflow mining problem with two dif-
ferences: (a) the traditional workflow mining problem tries
to find a model expressing the business process of an organi-
zation and the execution of a model usually involves multi-
ple people, while we focus on individual knowledge workers
and the discovered model is executed by a single user; (b) in
the traditional workflow mining problem, the instances of
the workflows are assumed to already be identified, whereas
in our work we must discover the instances first.

Motif discovery. Another related line of work is motif dis-
covery in biological sequence data and continuous time-series
data [21, 5, 32, 15, 24, 25]. A motif is a frequently-appearing
pattern. A typical motif discovery approach first applies a
sliding window to divide the temporal data into a set of sub-
sequences, and then builds a similarity matrix among these
subsequences. This matrix is then employed to select seed
motif occurrences and locate additional motif occurrences.
Motif discovery is useful for various time-series data mining
tasks such as mining association rules in time-series data,
building time series classification, anomaly/interestingness
detection, etc [5].

A motif occurrence corresponds to a subsequence of the time-
series data. Every event point between the start point and the



end point belongs to that motif occurrence. This is very dif-
ferent from the work procedures that we seek to discover,
which are interleaved and intermixed with unrelated (irrele-
vant) actions.

Desktop activity modeling. To build intelligent personal as-
sistants to help users organize their work, people have tried
to automatically extract understandable descriptions of a desk-
top user’s activities [9, 26, 2, 11]. Such descriptions can help
researchers understand users’ behavior and design smarter
intelligent agents. However, unlike our work procedures,
these descriptions do not support (semi-) automated execu-
tion of the discovered activities. Instead, each activity is usu-
ally represented as a set of objects (people, documents) or
as a cluster of action sequences. Many of these approaches
assume prior knowledge about the number of activities and
their duration.

Email activity management. Email activity management
systems help knowledge workers manage their daily work
life by tracking email exchanges. The work by Bellotti, et
al. [3], supports the manual population of an activity tem-
plate from emails. Dredze, et al. [8] classify email messages
into activities by analyzing their content. The work of Kush-
merick, et al. [18] is quite similar to our work in that they
also attempt to discover workflows and track the status of
those workflows. However, they focus on e-commerce trans-
actions where the email messages involve unique identifiers
(e.g., order numbers; ebay item numbers), which simplies
the problem.

WORK PROCEDURE DISCOVERY PROBLEM

Definitions
We now formally define the work procedure discovery prob-
lem.

DEFINITION 1. A resource is a data object such as a file,
email message, or web page.

In our modified TaskTracer system, each resource is assigned
a unique identifier the first time it is accessed. There are
several subtleties involved in handling ephemeral resources
such as email messages that are currently being composed or
MS Office documents that have not yet been saved (“Docu-
ment1”, “Presentation2”).

DEFINITION 2. An information flow action (also called a
provenance link) is a primitive or composite desktop action
that directly links two resources.

We directly instrumented the following information flow ac-
tions:

• Copy/paste. This involves instrumenting both the Copy
event (to capture the resource from which the information
is copied) and the Paste event (to capture the resource into
which the information is pasted).

• Attach file to email. In order to capture the name of the
file on disk, we added our own button to the MS Outlook
user interface.

• Save email attachment. In order to capture the name of
the saved file on disk, we added our own button to the MS
Outlook user interface.

• Download file from web page. We wrote our own down-
load manager as a plugin to Internet Explorer.

• Upload file to web page.

• Copy or Rename file in Windows Explorer.

DEFINITION 3. An information flow graph is a labeled
directed graph where the nodes are resources and the arcs
are information flow actions. If there are multiple informa-
tion flow actions linking two nodes, the graph contains a
single arc labeled with the set of corresponding information
flow actions.

The information flow graph is the raw graph of resources and
actions constructed from observing the user’s desktop activ-
ity. Note that there may be multiple actions connecting two
resources. For example, suppose the user performs a SaveAs
and then accidentally deletes part of a document. He might
copy/paste that part from the previous version. Another sim-
ple example is that there are often multiple copy/paste ac-
tions from one resource to another.

After the basic information flow graph is constructed, it is
augmented with additional arcs representing chain relations:

DEFINITION 4. A resource-action chain is a sequence of
resources joined by actions of a single type.

For example, consider a chain of files created by a sequence
of SaveAs actions: F1 was saved as F2 which was saved as
F3 which was saved as F4. We can collapse this into a single
step F1 → F4 for action “SaveAs. . . ”, where “SaveAs. . . ” is
a resource-chain action. A slightly more general example is
a chain of email messages: user A sends message M1 to user
B, user B replies with message M2 to user A, and then user
A replies with message M3 to user B. We can collapse this
into a single step M1 → . . . M3 for the resource chain action
“EmailSend. . . ”. More formally, for the actions “SaveAs”,
“EmailSend”, and “EmailReceive”, we define additional re-
source chain actions “SaveAs. . . ”, “EmailSend. . . ”, and “Email-
Receive. . . ”. Two resources linked by one of these special
actions denote a resource-action chain linked by the appro-
priate primitive actions.

DEFINITION 5. A work procedureWP = 〈R,A〉 is a la-
beled directed graph where R is the set of resources involved
in WP and A is the set of actions (including resource-chain
actions) performed in WP. Each resource r ∈ R corre-
sponds to a node. Each action a ∈ A corresponds to a di-
rected edge in the graph, with the target resource as the end
node. The label of a node is the resource type of that node
(document, web page) and the label of an edge is the type of
the action (copy/paste, attach file).

A work procedure is an abstract graph in which the specific
identity of the resources and information flow actions is re-
placed only by their types. Unlike in the information flow



Document1

Person1

Attach

Person2

Save Attachment

Doc1.doc

Send

SaveAs

Doc2.doc ReplyTo

Attach
Send

(a) Comment on a document

From: Person1

../arpa/Q3-
report.doc

SaveAs

Send

Save Attachment:  
Q3-report-Person3.doc

Save Attachment:  
Q3-report-Person4.doc

Save Attachment:  
Q3-report-Person5.doc

Paste

Person3

Person4

Person5

Save Attachment

Attach

ReplyTo

../arpa/Q3-report-
template.doc

Edit using WORD

Send

reminder

Attach

(b) Prepare quarterly report

Figure 1. Two typical work procedure examples.

graph, two nodes in a work procedure can be joined by only
a single edge.

Note that a work procedure typically does not contain all of
the information needed to automate the procedure. For ex-
ample, editing a document involves more than just perform-
ing a SaveAs, and uploading a file typically also involves
logging in to a web page, filling out a form, and so on.

DEFINITION 6. A work procedure instance consists of a
pair of a work procedure and a subgraph of an information-
flow graph joined by a mapping that maps each node and
edge in the work procedure into a node or edge of the same
type in the information-flow graph. If an edge is labeled with
a resource-chain action, then it can be mapped to a chain of
0 or more resources in the information-flow graph.

Given an information-flow graph and a work procedure, there
may be several different work procedure instances in the
information-flow graph. These instances may even share
nodes and edges.

DEFINITION 7. The work procedure discovery problem
is the following: Given an information-flow graph, discover
a set of work procedures to cover as much of the graph as
possible and that will generalize to additional information-
flow graphs.

Examples of Work Procedures
A simple work procedure Provide Comments on a Docu-
ment is presented in Figure 1(a). Person2 receives an email
message from Person1 requesting comments on an attached
Word file. Person2 saves the attachment in a folder associ-
ated with the relevant project. He opens the document and
uses SaveAs to save it with a new name. After editing the
file, Person2 replies to the original email message and at-
taches the edited file. If the system can recognize instances
of this work procedure, it can automatically create a ToDo
item when the email arrives and remind Person2 about the
progress. After detecting that Person2 has finished editing
the document, it can offer to send it back to Person1.

A more complex work procedure Prepare Quarterly Report
is presented in Figure 1(b). Person2 receives an email from
Person1 requesting the quarterly report with an attached Word
file and possibly a deadline. Person2 saves the attachment
into the relevant folder. He opens the file and does some
editing. Let us suppose that Person2 needs to obtain in-
formation from three additional people (Person3, Person4,
and Person5) to complete the report. He composes an email
message to these people requesting their contributions and
attaching this file as the template. As replies arrive, he saves
their attached files in the same folder. As the deadline ap-
proaches, he sends a reminder to those people who have not
yet sent in their contributions. When the deadline arrives,
he opens the original file and all of the various contributions
and he copies/pastes their materials into the file. Finally he
replies to the original email from Person1 with the attached
report file. If the system could recognize instances of this
work procedure, it could automatically create a ToDo item
when the email arrives. Later, it could save the attachment
and open it in Word. On request, it could create an outgoing
email message and attach the template. As the replies come
in, it could track them and save the attachments in the right
folder. It could also offer to send reminders to the people
who have not yet responded. It could also offer to open the
template file and all of the contribution files to help the user
edit the report. Finally, it could offer to compose a reply
email to Person1 and attach the final version of the file.

In this paper, we are interested in work procedures that can
provide benefit to the user either through automatic creation
and state tracking or through (partial) automation. Hence,
we make the following assumptions:

• A work procedure is a (weakly) connected graph. We
assume that we can observe (or reconstruct) enough in-
formation flow actions so that each work procedure is a
weakly connected graph. This means that every node can
be reached from every other node if we ignore the direc-
tions of the information flow links.

• A work procedure involves at least k = 3 resources. Au-



Figure 2. Screenshot of TaskTrail displaying a real-case provenance connection.

tomatic tracking of work procedures is likely to be more
useful if there are many resources involved, because users
have more difficulty keeping track of the state of more
complex procedures.

• A work procedure involves resources other than emails.
A procedure only consisting of emails is not our focus.
First, there are already very good email threading tools
that can help users track their work status [19]. We believe
it is also more difficult for the user to track work proce-
dures involving different kinds of resources, because this
requires working with multiple application programs.

BUILDING THE INFORMATION FLOW GRAPH
We build the information flow graph by utilizing the prove-
nance information collected by TaskTracer and augmenting
it with links inferred by analyzing the contents of resources.

The TaskTracer System and Provenance Information
User’s activities applied to resources are captured by the
TaskTracer system [7]. TaskTracer is an intelligent activ-
ity management system that allows users to organize and
retrieve information based on their activities. TaskTracer
collects various time-stamped user interactions (such as file
new, open, save, text selection, copy/paste, windows focus,
web navigation, email read/send, etc.) in Microsoft Office
(Word, Excel, PowerPoint, Outlook), text and pdf files, In-
ternet Explorer, and the Windows operating system. Each
interaction generates events which are stored in a database.
TaskTracer associates with each activity the set of resources

accessed when performing that activity. It leverages this data
and machine learning technology [31] to configure the desk-
top to assist users in organizing and re-finding information.

Recent research [4] has shown that common search criteria,
such as file modification time and even the document title,
are usually remembered inaccurately. There are other re-
source attributes that are more easily remembered by users
and could be helpful in re-finding documents. One such at-
tribute is a resource’s relationship to other resources [13, 4].
Inspired by this and other work, we extended TaskTracer to
capture a variety of provenance actions. These are also pub-
lished as events within TaskTracer and recorded in the event
database and in a provenance database. We have found that
even without any further analysis, provenance data can pro-
vide answers to user queries that cannot be obtained in any
other way. For example, a user might want to know such
things as “Did I ever email this Word file to Bob?”, “Did I
save this email attachment, and if so, where did I put it?”,
or “What Powerpoint presentations did I copy slides from to
produce this presentation?” We have modified the Windows
and Outlook user interfaces so that the user can right-click
on a file or email message and request a “provenance graph”
to be displayed. TaskTrail is the TaskTracer component that
displays these graphs and allows users to interact with them.

A real case using TaskTrail is shown in Figure 2. The user
could not find the PowerPoint document he prepared for Al-
berta. But he remembered that this document was created



from a previous presentation “tasktracer-ibm-v1.ppt” and he
knew where that presentation was located. So he right-clicked
“tasktracer-ibm-v1.ppt” and chose “Show TaskTrail” from
the context menu. He instantly found what he was search-
ing in the provenance graph. The left panel of TaskTrail
visualizes the entry point resource and resources related via
provenance (moving from left to right). The right panel lists
all resources contained in the current provenance relation-
ship. The user can change the display resolution, hover the
mouse over nodes and links to get detailed information, and
double-click on nodes to open resources.

Inferring Implicit Links
Some important provenance relations are not currently cap-
tured by TaskTracer because the corresponding instrumenta-
tion has not been implemented. Hence, for the data analyzed
in this study, we analyzed the contents of various resources
to reconstruct additional information flow relationships:

• Email threading: if email message X is a reply or for-
ward of message Y , we want to create a “reply/forward”
link from Y to X . An email thread is a group of messages
that are related by such links. By capturing email threads,
we can connect many resources which seemed unrelated
before. Those threading relationships can be accurately
recovered by analyzing the subject lines and the RFC-822
header fields of email messages (such as Message-ID, In-
Reply-To, References field, etc).

• Document conversion: many users prefer to convert doc
files into pdf files in order to send them as email attach-
ments. We would like to create a “PDFPrint” link from
this doc file to this pdf file. To capture such connection,
we extract the text contents of each pdf file and compare
it to the contents of doc files. If it matches a doc file, we
create a link from this doc file to the pdf file.

• URL click-through: instead of attaching a file, the user
sometimes provides a URL in the email message and asks
the recipient to download the file. If the user clicks on
a URL in an email and opens a website or downloads a
file, we wish to create a “Click-through/SaveAttachment”
link from this email to the website or the file. For each
navigation or download event, we check if the previous
window focus is the email client. If it is and the opened
email message contains that URL, we create a “Click-
through/SaveAttachment” link.

• Email reference: some email messages contain informa-
tion about specific documents. For example, the user might
receive an email regarding his paper submission and ask-
ing for a response. There should be a “Reference” link
from this document to the email message. Such email
usually contains the paper title in the email body. We use
a pre-trained key value extractor [6] and “false positive”
regular expressions [19] to extract key words such as doc-
ument titles in email messages. We define the first 200
words of a document to be the abstract of that document.
If any key word extracted from the email message appears
in the abstract, there is a potential connection. If an email
matches multiple documents (this could happen when the
user edits and saves the document with several versions),

S/C C S

S F S/C

C S/C S

S R S

Figure 3. Four occurrences of a frequent pattern. S: SaveAs, C:
Copy&Paste, F: File Copy, R: File Rename.

we only create one link from the document which has the
closest time distance to the email.

MINING FREQUENT WORK PROCEDURES
Given information flow graphs of desktop users, we can in-
fer work procedures by identifying recurring patterns within
these graphs. For computational reasons, we do this in two
steps. First, we ignore the labels on the links in the graph and
search for frequently-occurring subgraphs. Then, we choose
action types for each edge in the discovered subgraphs by an-
alyzing all instances of those subgraphs to choose the most
frequently occurring combinations of action types.

Mining Closed Frequent Relations
Our goal is to find closed weakly connected patterns in the
information flow graph that are frequent (i.e., have at least
s instances). A directed graph G is weakly connected if re-
placing all of its directed edges with undirected edges will
produce a connected (undirected) graph. The frequency of
a pattern graph P is the number of instances of P in the
information flow graph G. A pattern graph P is frequent
if its frequency is greater than or equal to a specified min-
imum support threshold s. A frequent pattern P is closed
if there is no graph P ′ such that P is a subgraph of P ′ and
they have the same frequency. In this sense, closed patterns
are locally “maximal” patterns that cannot grow any further
without losing some instances.

Graph pattern mining [16, 33, 29] follows the Apriori prin-
ciple: the support of a subgraph is always no less than the
support of any of its super-graphs. Thus we can first con-
sider frequent small graphs, and then check whether larger
graphs that contain them are still frequent. There are two
general approaches to efficient graph pattern mining [33]:
Apriori-based approaches extend the Apriori-based candi-
date generation-and-test approach while pattern-growth ap-
proaches grow patterns from a single graph directly. Pattern-
growth approaches are usually more efficient, since they avoid
some costly operations such as joining two subgraphs into a
larger graph. In this paper, we extend the GASTON algo-
rithm [29]. Recall that we ignore patterns that consist only
of email messages and patterns that involve fewer than k re-
sources. The remaining closed patterns correspond to candi-
date work procedures, except that their arcs are not labeled.

Searching For Frequent Activity Paths
The next step is to assign action type labels to the arcs. In
principle, we could consider all possible action type assign-
ments and score them to see how many work procedure in-
stances they have. We would then retain only those assign-
ments that had at least the minimum number of instances.
However, there are combinatorially many possible assign-
ments. Simply picking the most frequent individual action



type for each edge does not necessarily find patterns with
many instances. Figure 3 shows an example. If we pick
the most frequent activity separately for each edge, then the
labels S, C, and S would be the result. However, pattern
(S, C, S) only appears once. Instead, the most frequent as-
signment should be (C, C, S), which appears twice.

Algorithm 1 Search For Frequent Action Label Assign-
ments
Require: P : frequent pattern, O: its occurrences in D

1: A = {〈∅, O〉}
2: for each edge e = u → v in P do
3: A′ = ∅
4: for each label a appearing between u and v in O do
5: for each set 〈Acts, Occ〉 ∈ A do
6: Search for occurrence set

O′ = {o|Acts ∧ (a ∈ e) ∈ o, o ∈ Occ}
7: if |O′| ≥ the support threshold then
8: A′ = A′ ∪ {〈Acts ∧ (e = a), O′〉}
9: end if

10: end for
11: end for
12: if A′ = ∅ then
13: return fail
14: else
15: A = A′
16: end if
17: end for
18: return all activity paths in A

We employ a dynamic programming approach, as described
in Algorithm 1, to search for action assignments that ap-
pear no less than the minimum support threshold in the in-
formation flow graph. The complexity of this algorithm is
O(|P | ·m ·s) where |P | is the number of edges in pattern P ,
m is the maximal number of labels that edges of P have, and
s is the largest size of P ’s frequent action subsets given dif-
ferent numbers of actions. Since m and s are usually small,
this algorithm can efficiently find the frequent action label
assignments. Note that there is a chance that no assignment
of action types to the arcs in P can produce a sufficiently
frequent work procedure, in which case we discard P .

EXPERIMENTAL RESULTS
To evaluate our approach, we conducted experiments based
on data from real users. In December, 2007, the TaskTracer
system was deployed on Windows machines at SRI Inter-
national as part of a 3-day data collection exercise. Four
staff members participated in an exercise of knowledge work
in which they submitted and reviewed papers for a confer-
ence, filed travel documents, and prepared quarterly reports.
These activities were interleaved with other things (e.g., read-
ing online newspapers). We combined the actions identified
through desktop instrumentation with the additional actions
described above to produce information flow graphs for each
user. We manually analyzed the data and identified all of the
work procedures that the users executed. We identified 24
instances of work procedures involving 118 resources and
106 actions.
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Figure 4. Part of a user’s resource relationship graph. Shadowed cir-
cles are received emails. Non-shadowed circles are sent-out emails.
Boxes are non-email resources.
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Figure 5. F1 score as a function of the minimum support threshold,
with 95% confidence intervals.

We applied our learning algorithm to these information flow
graphs to discover work procedures. We evaluate the results
by measuring the extent to which the discovered work pro-
cedures match the manually-identified instances without in-
cluding false steps or omitting steps. Performance is mea-
sured by precision and recall. Precision is defined as the
number of relevant resources and actions in the set of discov-
ered occurrences divided by the total number of resources
and actions in the set of occurrences, and Recall is defined
as the number of relevant resources and actions in the set of
discovered occurrences divided by the total number of exist-
ing relevant resources and actions (which should have been
retrieved into the set of occurrences). We evaluate the al-
gorithms with the F1 score [17] which is 2*precision*recall
/(precision+recall).

A portion of one user’s resource relationship graph is shown
in Figure 4. It contains some interesting work procedures.
For example, Email28 from User2 is the start of a work
procedure asking User1 to comment on User2’s paper and
Email19 from User3 is the start of a work procedure asking
User1 to make contribution to a quarterly report.
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Figure 7. The discovered most frequent work procedure: edit and
return Document. The box with a dot inside means zero to multiple
“SaveAs” resources.

Figure 5 plots F1 as a function of the minimum support
threshold of the discovery algorithm. When the threshold is
small, the algorithm falsely treats many irrelevant resources
and actions as work procedures. This produces high re-
call but very low precision. As the threshold increases, the
number of false work procedures decreases, since such false
procedures don’t happen very often in the data. The best
trade-off between precision and recall is achieved when the
threshold is 3. Our approach successfully discovers most
work procedures without including many false resources or
actions.

Figure 6 plots F1 as a function of the minimum number k of
resources that must be present in the work procedure. When
k is small, the algorithm falsely treats some random patterns
as work procedures. This produces low precision. Most
work procedures involve fewer than 6 resources. Thus the
recall is very low when k becomes too large. The best per-
formance is achieved when we require that a work procedure
involves at least 3 resources.

The most frequent work procedure we discovered was “edit
and return a document”, as shown in Figure 7. In this proce-
dure, the user receives an email with an attachment, asking
him to edit this attachment and return it. So he saves that at-
tachment and begins editing it. He sometimes uses SaveAs
to save the edited document with a new name. After editing
the file, he replies to the original email message and attaches
the edited file. This general work procedure includes at least
two cases: “comment on another person’s paper” and “con-
tribute to CALO quarterly report”.

CONCLUSION AND FUTURE WORK
This paper investigates how to discover work procedures
from user desktop activity. A work procedure is defined

as a directed labeled graph, with nodes corresponding to
resources involved and edges corresponding to actions ex-
ecuted. To discover work procedures frequently executed,
we first build an information flow graph of resources based
on the provenance information captured by TaskTracer (and
manually extended by analyzing resource content). We then
applied a two-phase algorithm to find frequently-occurring
work procedures in these graphs. Experimental results show
that our approach can accurately discover almost all of the
known work procedure instances without introducing many
false work procedures.

The focus of this paper is to discover work procedures fre-
quently executed by users. The procedures that we discover
do not contain non-deterministic choices or conditionals (ex-
cept for the resource-action chains). The procedures also
do not capture partial order constraints on the steps. One
can imagine learning models that include “choice” branches
that require the user to choose one of several paths to reach
a goal (which would support optional steps and alternative
ways of performing a task) and “parallel” branches that re-
quire the user to finish a set of parallel paths in order to reach
a goal [23] (which would support partially-ordered actions).
With these extensions, different executions of one procedure
could lead to different observations or to observations oc-
curring in different orders. With enough data, it should be
possible to discover these more complex procedures.

Another goal of future work will be to convert the discovered
work procedures into a form that supports efficient recogni-
tion and state estimation. One candidate representation is
Logical Hidden Markov Models (logical HMMs) [28]. Log-
ical HMMs can handle passing parameters (e.g., email ad-
dresses, resource ids) from one step to another in the work
procedure. They have been shown to be effective in model-
ing users’ actions [28]. With a well-defined logical HMM
for each discovered work procedure, an intelligent assistant
could monitor the user’s behavior and determine the state of
execution of each procedure instance. This would support a
smart ToDo manager that could automatically populate the
ToDo list and automatically detect when items were com-
plete and could be removed from the ToDo list.
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