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Entropy

• Let X be a discrete random variable
• The surprise of observing X = x is defined 

as 
– log2 P(X=x)

• Surprise of probability 1 is zero.
• Surprise of probability 0 is ∞
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Expected Surprise
• What is the expected surprise of X?

– ∑x P(X=x) · [– log2 P(X=x)]
– ∑x – P(X=x) · log2 P(X=x)

• This is known as the entropy of X: H(X)
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Shannon’s Experiment

• Measure the entropy of English
– Ask humans to rank-order the next letter given all of 

the previous letters in a text.
– Compute the position of the correct letter in this rank 

order
– Produce a histogram
– Estimate P(X| …) from this histogram
– Compute the entropy H(X) = expected number of bits 

of “surprise” of seeing each new letter
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Predicting the Next Letter

were but heedless lads like their generation and had made no 
provision against rain Here was matter for dismay for they were 
soaked through and chilled They were eloquent in their distress 
but they presently discovered that the fire had eaten so far up 
under the great log it had been built against  where it curved 
upward and separated itself from the ground  that a hand breadth
or so of it had escaped wetting  so they patiently wrought until
with shreds and bark gathered from the under sides of sheltered 
logs they coaxed the fire to burn again Then they piled on great
dead boughs till they had a roaring furnace and were glad hearted 
once more They dried their boiled ham and had a feast and after 
that they sat by the fire and expanded and glorified their midnight 
adventure until morning for there was not a dry spot to sleep on
anywhere around 

Ever y t h i ng_in_camp_w as_drenched_the_camp_fire_as_well_for_they_
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Statistical Learning Methods
• The Density Estimation Problem:

– Given: 
• a set of random variables U = {V1, …, Vn}
• A set S of training examples {U1, …, UN} drawn independently 

according to unknown distribution P(U)
– Find:

• A bayesian network with probabilities Θ that is a good approximation 
to P(U)

• Four Cases:
– Known Structure; Fully Observable
– Known Structure; Partially Observable
– Unknown Structure; Fully Observable
– Unknown Structure; Partially Observable
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Bayesian Learning Theory

• Fundamental Question:  Given S how to 
choose Θ?

• Bayesian Answer: Don’t choose a single 
Θ.
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A Bayesian Network for Learning 
Bayesian Networks

P(U|U1,…,UN) = P(U|S) = P(U ∧ S) / P(S)
= [∑Θ P(U|Θ) ∏i P(Ui|Θ) · P(Θ)] / P(S)

P(U|S) = ∑Θ P(U|Θ) · [P(S|Θ) · P(Θ) / P(S)]
P(U|S) = ∑Θ P(U|Θ) · P(Θ | S)
Each Θ votes for U according to its posterior probability.
“Bayesian Model Averaging”

Θ

U U1 U2 UN
…
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Approximating Bayesian Model 
Averaging

• Summing over all possible Θ’s is usually 
impossible.

• Approximate this sum by the single most 
likely Θ value, ΘMAP

• ΘMAP = argmaxΘ P(Θ|S) 
= argmaxΘ P(S|Θ) P(Θ)

• P(U|S) ≈ P(U|ΘMAP) 
• “Maximum Aposteriori Probability” – MAP 
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Maximum Likelihood Approximation

• If we assume P(Θ) is a constant for all Θ, then 
MAP become MLE, the Maximum Likelihood 
Estimate
ΘMLE = argmaxΘ P(S|Θ)

• P(S|Θ) is called the “likelihood function”
• We often take logarithms

ΘMLE = argmaxΘ P(S|Θ)
= argmaxΘ log P(S|Θ)
= argmaxΘ log ∏i P(Ui|Θ)
= argmaxΘ ∑i log P(Ui|Θ)
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Experimental Methodology

• Collect data
• Divide data randomly into training and 

testing sets
• Choose Θ to maximize log likelihood of the 

training data
• Evaluate log likelihood on the test data
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Known Structure, Fully Observable

Age Preg

Mass

Diabetes

Insulin

Glucose
043123
043021
124282
023302
143011
143053
043113
033043
063323
032133

Diabetes?AgeMassInsulinGlucosePreg
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Learning Process

• Simply count the cases:

P(Age = 2) =
N(Age = 2)

N

P (Mass= 0|Preg = 1,Age= 2) = N(Mass= 0, Preg = 1, Age = 2)

N(Preg = 1, Age = 2)
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Laplace Corrections
• Probabilities of 0 and 1 are undesirable because 

they are too strong.  To avoid them, we can 
apply the Laplace Correction.  Suppose there 
are k possible values for age:

• Implementation: Initialize all counts to 1.  When 
the counts are normalized, this automatically 
computes k.

P (Age= 2) =
N(Age= 2) + 1

N + k
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Spam Filtering using Naïve Bayes

• Spam ∈ {0,1}
• One random variable for each possible word that 

could appear in email
• P(money=1 | Spam=1); P(money=1 | Spam=0)

Spam

money confidential nigeria machine learning…
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Probabilistic Reasoning

• All of the variables are observed except 
Spam, so the reasoning is very simple:
P(spam=1|w1,w2,…,wn) = α P(w1|spam=1) ·

P(w2|spam=1) · · · P(wn|spam=1) · P(spam=1)
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Likelihood Ratio

• To avoid normalization, we can compute 
the “log odds”:
P(spam= 1|w1, . . . , wn)

P(spam= 0|w = 1, . . . , wn)
=

αP(w1|spam= 1) · · ·P(wn|spam= 1) · P(spam= 1)
αP(w1|spam= 0) · · ·P(wn|spam= 0) · P(spam= 0)

P(spam= 1|w1, . . . , wn)
P(spam= 0|w= 1, . . . , wn)

=
α

α
·P(w1|spam= 1)
P(w1|spam= 0)

· · · P(wn|spam= 1)
P(wn|spam= 0)

·P (spam= 1)
P (spam= 0)

log
P(spam= 1|w1, . . . ,wn)

P (spam= 0|w = 1, . . . , wn)
= log

P(w1|spam= 1)
P(w1|spam= 0)

+. . .+log
P(wn|spam= 1)
P(wn|spam= 0)

+log
P(spam= 1)

P(spam= 0)
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Design Issues
• What to consider “words”?

– Read Paul Graham’s articles (see web page)
– Read about CRM114
– Do we define wj to be the number of times wj appears in the 

email?  Or do we just use a boolean: presence/absence of the 
word?

• How to handle previously unseen words?
– Laplace estimates will assign them probabilities of 0.5 and 0.5 

and NB will therefore ignore them.
• Efficient implementation

– Two hash tables: one for spam and one for non-spam that 
contain the counts of the number of messages in which the word 
was seen.
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Correlations?

• Naïve Bayes assumes that each word is 
generated independently given the class.

• HTML tokens are not generated 
independently.  Should we model this?

Spam

money confidential nigeria <b> href…

HTML
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Dynamics
• We are engaged in an “arms race” between the 

spammers and the spam filters.  Spam is changing all 
the time, so we need our estimates P(wi|spam) to be 
changing too.

• One Method: Exponential moving average.  Each time 
we process a new training message, we decay the 
previous counts slightly.  For every wi:
– N(wi|spam=1) := N(wi|spam=1) · 0.9999
– N(wi|spam=0) := N(wi|spam=0) · 0.9999

Then add in the counts for the new words.
Choose the constant (0.9999) carefully.
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Decay Parameter

• “half life” is 6930 updates (how did I compute that?)
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Architecture
• .procmailrc is read by sendmail on engr 

accounts.  This allows you to pipe your email 
into a program you write yourself. 

# .procmail recipe
# pipe mail into myprogram, then continue processing it
:0fw: .msgid.lock 
| /home/tgd/myprogram
# if myprogram added the spam header, then file into 
# the spam mail file
:0: * ^X-SPAM-Status: SPAM.*
mail/spam 
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Architecture (2)

• Tokenize
• Hash
• Classify
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Classification Decision

• False positives: good email misclassified 
as spam

• False negatives: spam misclassified as 
good email

• Choose a threshold θ

log
P(spam= 1|w1, . . . , wn)

P(spam= 0|w = 1, . . . ,wn)
> θ
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Plot of False Positives versus False 
Negatives
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Methodology
• Collect data (spam and non-spam)
• Divide data into training and testing (presumably by 

choosing a cutoff date)
• Train on the training data
• Test on the testing data
• Compute Confusion Matrix:

True ClassPredicted 
Class

TNFNnonspam

FPTPspam

nonspamspam
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Choosing θ by internal validation

• Subdivide Training Data into “subtraining” set 
and “validation” set

• Train on subtraining set
• Classify validation set and record the predicted 

log odds of spam for each validation example
• Sort and construct FP/FN graph
• Choose θ
• Now retrain on entire training set


