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Search-Based Agents
• Appropriate in Static Environments where a 

model of the agent is known and the 
environment allows
– prediction of the effects of actions
– evaluation of goals or utilities of predicted states

• Environment can be partially-observable, 
stochastic, sequential, continuous, and even 
multi-agent, but it must be static!

• We will first study the deterministic, discrete, 
single-agent case.
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Computing Driving Directions
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Search Algorithms

• Breadth-First
• Depth-First
• Uniform Cost
• A*
• Dijkstra’s Algorithm
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Formal Statement of Search 
Problems

• State Space: set of possible “mental” states
– cities in Romania

• Initial State: state from which search begins
– Arad

• Operators: simulated actions that take the agent 
from one mental state to another
– traverse highway between two cities

• Goal Test:
– Is current state Bucharest?
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General Search Algorithm

function GENERAL-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

Strategy: first-in first-out queue (expand oldest leaf first)
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Leaf Selection Strategies

• Breadth-First Search:  oldest leaf (FIFO)
• Depth-First Search: youngest leaf (LIFO)
• Uniform Cost Search: cheapest leaf (Priority 

Queue)
• A* search: leaf with estimated shortest total path 

length g(x) + h(x) = f(x)
– where g(x) is length so far
– and h(x) is estimate of remaining length
– (Priority Queue)
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A* Search

• Let h(x) be a “heuristic function” that gives 
an underestimate of the true distance 
between x and the goal state
– Example: Euclidean distance

• Let g(x) be the distance from the start to x, 
then g(x) + h(x) is an lower bound on the 
length of the optimal path
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Euclidean Distance Table

374Zerind244Lugoj
199Vaslui226Iasi
80Urziceni151Hirsova

329Timisoara77Giurgiu
253Sibiu176Fagaras
193Rimnicu Vilcea161Eforie
100Pitesti242Dobreta
380Oradea160Craiova
234Neamt0Bucharest
241Mehadia366Arad
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A* Search

Arad (0+366=366)

Sibiu (140+253=393)Zerind (75+374=449) Timisoara (118+329=447)

Fagaras (239+176=415) Oradea (291+380=671)

Bucharest (450+0=450)

Rimnicu Vilcea (220+193=413)

Pitesti (317+100=417) Craiova (366+160=526)

Craiova (455+160=615)Bucharest (418+0=418)

All remaining leaves have f(x) ≥ 418, so we know they 
cannot have shorter paths to Bucharest
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Dijkstra’s Algorithm

• Works backwards from the goal
• Each node keeps track of the shortest 

known path (and its length) to the goal
• Equivalent to uniform cost search starting 

at the goal
• No early stopping: finds shortest path from 

all nodes to the goal
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Local Search Algorithms

• Keep a single current state x
• Repeat

– Apply one or more operators to x
– Evaluate the resulting states according to an 

Objective Function J(x)
– Choose one of them to replace x (or decide 

not to replace x at all)
• Until time limit or stopping criterion
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Hill Climbing

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Simple hill climbing: 
apply a randomly-chosen 
operator to the current 
state

If resulting state is better, 
replace current state

Steepest-Ascent Hill 
Climbing:

Apply all operators to 
current state, keep state 
with the best value

Stop when no 
successors state is better 
than current state
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Gradient Ascent

• In continuous state spaces, x = (x1, x2, …, xn)
is a vector of real values

• Continuous operator: x := x+ ∆x for any 
arbitrary vector ∆x (infinitely many operators!)

• Suppose J(x) is differentiable.  Then we can 
compute the direction of steepest increase of J 
by the first derivative with respect to x, the 
gradient: 
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Gradient Descent Search

• Repeat
– Compute Gradient ∇J
– Update x := x + η ∇J

• Until ∇J ≈ 0

• η is the “step size”, and it must be chosen 
carefully

• Methods such as conjugate gradient and 
Newton’s method choose η automatically
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Visualizing Gradient Ascent

If η is too large, search may overshoot and miss the maximum or 
oscillate forever
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Problems with Hill Climbing

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Local optima

Flat regions

Random restarts can 
give good results
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Simulated Annealing 
• T = 100  (or some large value)
• Repeat

– Apply randomly-chosen operator to x to obtain x′.
– Let ∆E = J(x′) – J(x)
– If ∆E > 0, switch to x′
– Else switch to x′ with probability

• exp [∆E/T]   (large negative steps are less likely)
• T := 0.99 * T  (“cool” T)

• Slowly decrease T (“anneal”) to zero
• Stop when no changes have been accepted for many 

moves
• Idea: Accept “down hill” steps with some probability to 

help escape from local minima


