

(c) 2003 Thomas G. Dietterich and Devika Subramanian 1

Computing Driving Directions

Formal Statement of Search Problems State Space: set of possible "mental" states cities in Romania Initial State: state from which search begins Arad Operators: simulated actions that take the agent from one mental state to another traverse highway between two cities Goal Test: Is current state Bucharest?

(c) 2003 Thomas G. Dietterich and Devika Subramanian

6

A* Search

- Let *h*(*x*) be a "heuristic function" that gives an underestimate of the true distance between *x* and the goal state
 - Example: Euclidean distance
- Let g(x) be the distance from the start to x, then g(x) + h(x) is an <u>lower bound</u> on the length of the optimal path

(c) 2003 Thomas G. Dietterich and Devika Subramanian 9

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

Fuclidean Distance Table

Gradient Descent Search

- · Repeat
 - Compute Gradient ∇J
 - Update x := x + $\eta \nabla J$
- Until $\nabla J\approx 0$
- η is the "step size", and it must be chosen carefully
- Methods such as conjugate gradient and Newton's method choose η automatically

(c) 2003 Thomas G. Dietterich and Devika Subramanian

