
1

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

1

Search-Based Agents
• Appropriate in Static Environments where a

model of the agent is known and the
environment allows
– prediction of the effects of actions
– evaluation of goals or utilities of predicted states

• Environment can be partially-observable,
stochastic, sequential, continuous, and even
multi-agent, but it must be static!

• We will first study the deterministic, discrete,
single-agent case.

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

2

Computing Driving Directions

Arad

Oradea

Zerind

Timisoara

Lugoj

Dobreta

Sibiu

Rimnicu Vilcea

Fagaras

Pitesti

Mehadia

Craiova

Bucharest

Giurgia

Urzicenl

Neamt

Iasi

Vasini

Hirsova

Eforie

71

75

118

140

151

99

80

111

70

75

120

146

97

138

101

211

85

90

142

92

87

98

86

You are
here

You want
to be here

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

3

Search Algorithms

• Breadth-First
• Depth-First
• Uniform Cost
• A*
• Dijkstra’s Algorithm

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

4

Oradea
(146)

71

Breadth-First

Arad (0)

75

Zerind
(75)

118

Timisoara
(118)

Lugoj
(229)

111

Mehadia
(299)

70

75
Dobreta

(486) 120

140
Sibiu
(140)

151

Rimnicu Vilcea
(220)

80

Fagaras
(239)99

Craiova
(366)

146

Pitesti
(317)97

138 Bucharest (450)

211

101

Detect duplicate path (291)

Detect new shorter path (418)

Detect duplicate path (455)

Detect duplicate path (504)

Detect new shorter path (374)

Detect duplicate path (494)

Detect duplicate path (197)

2

Breadth-First
Oradea
(146)

71

Arad (0)

75

Zerind
(75)

118

Timisoara
(118)

Lugoj
(229)

111

Mehadia
(299)

70

75
Dobreta

(486) 120

140
Sibiu
(140)

151

Rimnicu Vilcea
(220)

80

Fagaras
(239)99

Craiova
(366)

146

Pitesti
(317)97

138 Bucharest (450)

211

101

Arad (0)

Sibiu (140)Zerind (75) Timisoara (118)

Arad (150) Oradea (146) Arad (280) Fagaras (239) Oradea (291) Arad (236) Lugoj (229)

Sibiu (197) Sibiu (338) Bucharest (450)

Rimnicu Vilcea (220)

Timisoara (340) Mehadia (299)Sibiu (300) Pitesti (317) Craiova (366)

Lugoj (369) Dobreta (374)
Craiova (455)Rimnicu Vilcea (317) Bucharest (418) Rimnicu Vilcea (482) Dobreta (486) Pitesti (504)

Medhadia (449) Craiova (494)

Zerind (217)

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

6

Formal Statement of Search
Problems

• State Space: set of possible “mental” states
– cities in Romania

• Initial State: state from which search begins
– Arad

• Operators: simulated actions that take the agent
from one mental state to another
– traverse highway between two cities

• Goal Test:
– Is current state Bucharest?

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

7

General Search Algorithm

function GENERAL-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

Strategy: first-in first-out queue (expand oldest leaf first)

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

8

Leaf Selection Strategies

• Breadth-First Search: oldest leaf (FIFO)
• Depth-First Search: youngest leaf (LIFO)
• Uniform Cost Search: cheapest leaf (Priority

Queue)
• A* search: leaf with estimated shortest total path

length g(x) + h(x) = f(x)
– where g(x) is length so far
– and h(x) is estimate of remaining length
– (Priority Queue)

3

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

9

A* Search

• Let h(x) be a “heuristic function” that gives
an underestimate of the true distance
between x and the goal state
– Example: Euclidean distance

• Let g(x) be the distance from the start to x,
then g(x) + h(x) is an lower bound on the
length of the optimal path

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

10

Euclidean Distance Table

374Zerind244Lugoj
199Vaslui226Iasi
80Urziceni151Hirsova

329Timisoara77Giurgiu
253Sibiu176Fagaras
193Rimnicu Vilcea161Eforie
100Pitesti242Dobreta
380Oradea160Craiova
234Neamt0Bucharest
241Mehadia366Arad

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

11

A* Search

Arad (0+366=366)

Sibiu (140+253=393)Zerind (75+374=449) Timisoara (118+329=447)

Fagaras (239+176=415) Oradea (291+380=671)

Bucharest (450+0=450)

Rimnicu Vilcea (220+193=413)

Pitesti (317+100=417) Craiova (366+160=526)

Craiova (455+160=615)Bucharest (418+0=418)

All remaining leaves have f(x) ≥ 418, so we know they
cannot have shorter paths to Bucharest

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

12

Dijkstra’s Algorithm

• Works backwards from the goal
• Each node keeps track of the shortest

known path (and its length) to the goal
• Equivalent to uniform cost search starting

at the goal
• No early stopping: finds shortest path from

all nodes to the goal

4

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

13

Local Search Algorithms

• Keep a single current state x
• Repeat

– Apply one or more operators to x
– Evaluate the resulting states according to an

Objective Function J(x)
– Choose one of them to replace x (or decide

not to replace x at all)
• Until time limit or stopping criterion

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

14

Hill Climbing

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Simple hill climbing:
apply a randomly-chosen
operator to the current
state

If resulting state is better,
replace current state

Steepest-Ascent Hill
Climbing:

Apply all operators to
current state, keep state
with the best value

Stop when no
successors state is better
than current state

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

15

Gradient Ascent

• In continuous state spaces, x = (x1, x2, …, xn)
is a vector of real values

• Continuous operator: x := x+ ∆x for any
arbitrary vector ∆x (infinitely many operators!)

• Suppose J(x) is differentiable. Then we can
compute the direction of steepest increase of J
by the first derivative with respect to x, the
gradient:

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

16

Gradient Descent Search

• Repeat
– Compute Gradient ∇J
– Update x := x + η ∇J

• Until ∇J ≈ 0

• η is the “step size”, and it must be chosen
carefully

• Methods such as conjugate gradient and
Newton’s method choose η automatically

5

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

17

Visualizing Gradient Ascent

If η is too large, search may overshoot and miss the maximum or
oscillate forever

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

18

Problems with Hill Climbing

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Local optima

Flat regions

Random restarts can
give good results

(c) 2003 Thomas G. Dietterich
and Devika Subramanian

19

Simulated Annealing
• T = 100 (or some large value)
• Repeat

– Apply randomly-chosen operator to x to obtain x′.
– Let ∆E = J(x′) – J(x)
– If ∆E > 0, switch to x′
– Else switch to x′ with probability

• exp [∆E/T] (large negative steps are less likely)
• T := 0.99 * T (“cool” T)

• Slowly decrease T (“anneal”) to zero
• Stop when no changes have been accepted for many

moves
• Idea: Accept “down hill” steps with some probability to

help escape from local minima

